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Introduction

The emergence and spread of the Internet and distributed systems has
increased the need for a flexible way to represent data, easing its exchange
and integration with other data sources. This has led to the introduction
of the semistructured language XML (eXtensible Markup Language). XML
has been defined and standardized by W3C [1], and is a flexible language
widely used to publish and exchange data on the web and in distributed
systems. Several implementations to support XML have been developed.
Some of these choose to store XML on top of relational database systems.
These proposals have proved to be successful as they can make use of
the mature relational technology. To access the stored data, XPath [5]
and XQuery [6], the most common languages to query XML, can be used.
An XPath expression can be seen as a sequence of steps, where each
step corresponds to a join operation between two tables of XML nodes.
While XPath can only select XML nodes from a document, XQuery is a
superset of XPath allowing selection of nodes, updating of existing data,
and construction of new XML fragments.

As with queries in the relational context, the processing of XQueries
in an XML database system should be preceded by an optimization phase
which aims at finding the cheapest execution plan based on some pre-
defined cost functions. Query optimization in relational database systems
has been thoroughly researched in the last four decades, resulting in a
multitude of optimization techniques. These techniques, although quite
mature, still face some challenges as we will see in the next section. The
problems in relational optimization techniques are aggravated when impor-
ted into the XML context, because of the nature and complexity of XQuery.
These challenges, in both the relational and the XQuery cases, might lead
to poor plans chosen for execution, creating a pressing need to investigate
new and more robust optimization techniques.

The subject of this thesis is the optimization of the execution of XQuer-
ies in a relational database system, with a focus on optimizing the execution
order of XPath steps and joins in a plan. This is referred to as the join order-
ing problem. The join ordering problem is a classical problem extensively

Thesis Focus



1. Introduction

researched in the relational context. In fact, one of the most expensive but
heavily used operator in query processing is the join operator. Therefore,
one of the main tasks and focus of a relational optimizer is to determine the
execution order of the joins in a plan such that the processing is as efficient
as possible. The problem is not trivial with a search space consisting of
n!i" plans where n represents the number of joins and i the number of
available physical implementations for the join operator. The complexity
of this problem is intensified in the context of XQuery, where every XPath
step adds an extra join operator to the formula, since as mentioned earlier
an XPath step consists of a join between two tables. We stress that in some
situations multiple axis steps in an XPath expression can be grouped into
a single selection operation. This is the case when mapping techniques
like for instance shared and hybrid inlining [115] are used to shred the
XML document into relational tables, or when certain types of XML in-
dices [39] 81} [82] are built. In this thesis, we consider the case where each
XPath axis step is conceptually seen as a join, and also physically mapped
into a join operator.

In short, this thesis is about query optimization techniques, addressing the chal-
lenges that are behind the deficiencies of current optimizers. We focus on the join
ordering problem in the context of XQuery, while aiming at overcoming the more
general join ordering challenges relational optimizers are still facing.

To tackle the above problem, we propose a solution which deviates from the
traditional approach used by current optimizers. Our strategy is to move
the optimization phase to run-time, making it possible for the optimizer to use
and benefit from the available information about the queried documents
and the constructed intermediate results.

In this chapter, we first review some of the important challenges still faced
by traditional relational optimizers. We then present the research ques-
tions that will be studied in this thesis and briefly describe our proposed
solution.

1.1 Challenges in Database Optimization

Challenges in Nowadays, database systems are exploited in several domains, from small
Traditional institutions (schools, libraries) to big organizations (banks, hospitals, uni-
Optimizers Versities, governmental departments). The usage of the database system

ranges from the execution of simple queries to retrieve specific pieces
of information, to the generation of reports, to running complex queries
that analyze the stored data to extract information useful to the business
intelligence of the enterprise. With the constant increase in the amount
of data stored in a database system and in the complexity of queries,
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good optimizers are highly needed. Are traditional relational optimizers
up to the task? In fact, in some cases these optimizers are successful in
building good execution plans, and in other cases they generate plans that
are far from optimal [28]. Moreover, relational optimizers have proven to
be insufficient in the context of XML, especially that the optimization of
XQueries brings in its own challenges. This section presents some of the
most important causes behind the deficiencies, addressed in this thesis, of
current optimizers.

1.1.1 Cardinality and Cost Estimation

The success of traditional optimizers relies on good cost models, which in
turn are highly dependent on accurate cardinality estimation techniques.
In a database system, techniques to estimate the cardinality of operators
are based on collected statistics. Although a lot of work has been done
on building good statistics, these are often an inaccurate not up-to-date
reflection of the actual content of the database [71, [120].

Still even when the statistics are erroneous, the cardinality and cost
estimations derived by the optimizer for a single operator are usually ac-
curate enough. When estimating the cardinality of a sequence of operators,
the optimizer uses the estimated characteristics of the intermediate result
of one operator to estimate the cardinality of the subsequent operator.
Small errors in the maintained statistics can lead to estimation mistakes
which degrade and propagate exponentially through the plan. This may
result, in case of big queries, in large estimation errors, and hence bad
plans chosen for execution [71].

A cost model also determines the cost of an operation by estimating
its CPU and I/0 costs. Therefore, an accurate cost model should take
into account the physical implementation of operators, and the cost of
accessing data from disk. The latter is a non-trivial task since it requires the
knowledge of the physical location of data and index pages, and the cost
of a disk access. Although a lot of effort in the field has led to better cost
models, cost estimations are still a challenge in query optimization [27, 28]

In the XML context, contrary to the relational context where only value
statistics are collected, XML statistics should capture both the structure
of the document and the value of the nodes, making the collection of
adequate statistics a hard task [103]. A lot of work has been conducted to
collect statistics from XML documents. Most propose to summarize the
data content and structure into a synopsis; however, building a concise
and still accurate representation of the relationships between the different
nodes in the XML document it still considered a challenge. Without good
statistics, cardinality estimation in XML fails to be accurate.

Cost modeling in XML is still a poorly researched topic. In fact de-
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veloping cost models for XML query processing is much harder than
building cost models in the relational context [131]. Advances in the field
are hindered by the complexity of XML-specific operators, the data access
of which is very hard to predict and to model.

1.1.2 Detection of Correlation Between Attributes

Even though a lot of work on building better statistics has been done, cap-
turing correlations between attributes remains a challenge. In fact, summar-
izing the number of distinct pairs of values gives only very shallow know-
ledge about the existing correlations. Additionally using 2-dimensional
histograms suffers from the large space of possible combinations, and
picking the columns on which to build the histogram is non trivial as it
requires a pre-knowledge of the correlated attributes [27, 28} [120]. Note
that trying to capture the correlation between three or more attributes
increases the complexity of the problem exponentially.

When no information about the correlation between two attributes is
collected, the optimizer assumes that the values of both attributes are
independent. The attribute value independence (AVI) assumption is used
in cardinality estimation techniques to simplify the estimation process.
Obviously, the AVI assumption does not hold in real-life data, leading to
large errors in estimations [36} [71, 120].

Correlation between attributes does occur frequently in databases. The
inability to detect it during optimization, and assuming attribute value
independence, may result in cardinality estimations with orders of mag-
nitude off from the real values, which in turn leads to picking bad plans for
execution [36]. Similarly, in the XML context the problem of not detecting
correlations may result in bad optimization decisions.

1.1.3 Large Queries

When queries include a small number of joins, it is possible to optimize
the ordering of the joins using an exhaustive search algorithm possibly
enhanced by pruning techniques that disregard categories of plans that are
most likely bad. When optimizing the ordering of a large number of joins,
these algorithms become prohibitively expensive when enumerating the
large number of possible orderings [119].

In the XML context, an XPath expression can be seen as a sequence
of steps, where each step corresponds to a join operation between two
tables of XML nodes. Therefore, an XQuery, which usually consists of
several XPath steps, contains on average more joins than relational queries.
In the XMark benchmark [4], the number of joins in an XQuery ranges
between 5 and 32. The number of joins in XQueries issued in real life is
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expected to be even larger. This large number of joins in an XQuery makes
its optimization a challenge.

1.1.4 Precompiled Plans

In some situations, traditional relational database systems precompile
parametric queries into execution plans, and store these plans for future
processing. Types of queries that are usually precompiled into execution
plans are frequently issued queries, and queries that have a long and
expensive optimization phase. Examples of such queries are stored pro-
cedures, and queries that originate from template forms. The reason for
not re-compiling these queries every time they are initiated is to avoid
spending time on optimization. Since such a query contains parameters,
the value of which is specified at run-time, the optimizer compiles the
query into the plan that performs well for the widest range of the para-
meters value. Nevertheless, the performance of a candidate plan may
vary significantly with the different parameter settings. Therefore, in case
the values of some parameters in an issued query fall outside the range
optimized for, the pre-compiled plan will be sub-optimal and may result
in a poor execution performance [75].

Parametric queries are even more common in the XML context. In
fact, XQuery is often viewed and used as a functional programming
language. As a result, users write queries which include their own defined
functions, or even import libraries containing a large number of user-
defined functions [2]. The input to these functions can be variables, context
nodes and even the to be queried document. In this case, a precompiled
plan may, for some values of the parameters, result in an unacceptable
execution time.

1.1.5 Absence of Statistics

Users nowadays issue queries that involve data sources stored on remote
machines (e.g. from the web) for which no statistics can be built [130]. More
specifically in XQuery, documents may be accessed using the fn:doc (url)
construct, which allows to specify the name of the to be queried document
at run-time. In these cases, access to statistical data at compile time is not
possible. Without any knowledge about data cardinalities, the optimizer
will derive an execution plan based on generic heuristics, with a high
chance of making bad choices.

We conclude this section by noting that current optimizers have become
a module with quite a complex logic. In fact, it has been proven that in
general it is hard to predict the decisions made and the execution plans
chosen by optimizers [111].
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1.2 Thesis Contributions

This section presents the contributions of this thesis. We start by giving
the research questions that will be the subject of investigation in this thesis.
We then give a brief description of the solution we propose.

1.2.1 Research Questions

The focus of this thesis is to design a robust query optimization technique
that can find a good execution order for the XPath axis step and join
operators in a given XQuery, while overcoming the challenges described
in Section To achieve this, we need to answer the following research
question which is in fact the center of investigation in this thesis:

Main research question: How to develop an XQuery optimizer which has the
following properties: autonomy, robustness in always finding a good execution
plan, and efficiency.

To construct the required autonomous, robust and efficient optimizer, the
above main research question is divided into the next three sub-questions:

® Research question 1: How can an optimizer accurately estimate the car-
dinality and cost of operators without relying on any a priori collected
statistics and cost model?

® Research question 2: How can the correlation existing between several
attributes be detected and exploited?

® Research question 3: How can the proposed optimizer quarantee a good
quality of decisions?

Additionally, our proposed optimizer should be suitable for the different
existing database system architectures, leading to our fourth research
question:

Research question 4: How can our proposed optimization technique be applied to
different database system architectures (full materialization and pipelined execution
strategies)?

1.2.2 Approach

In this thesis, we adopt a fundamentally different approach to query
optimization. We propose ROX, a Run-time Optimizer for XQueries,
which radically departs from the traditional path of separating the query
compilation and query execution phases. This section starts by giving a
general description of the ROX approach and then explains the way ROX
satisfies the properties enumerated in Section[1.2.1]
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General Description: ROX performs the optimization of queries at run-
time. It focuses on optimizing the execution order of the path steps and
relational joins in an XQuery. It does so by interleaving optimization and
execution steps, using sampling techniques to estimate the cardinalities
and costs of operators. Each optimization phase initiates a sampling-
based search to identify the sequence of operators most efficient to execute
first. The execution step executes the chosen sequence of operators and
materializes the result. This allows the subsequent optimization phase to
analyze the newly materialized results to update the previously estimated
cardinalities.

Autonomy and no dependence on statistics and cost model: By defer-
ring optimization to run-time, it becomes possible to accurately observe the
characteristics and size of intermediate data, and to accurately estimate the
cost of operators. ROX uses sampling techniques to accurately estimate the
cardinality and cost of the different operators, which makes it autonomous
and independent of any a priori collected statistics and cost model. Note
that the alternation between optimization and execution steps allows the
optimization phases of ROX to use the newly materialized intermediate
results as input to their sampling operations. This makes it possible to
update the previously estimated cardinalities, and results in more accurate
cardinality estimations.

Robustness and correlation detection: The alternation of optimization
and execution steps followed by the full materialization of results is the
main factor behind the robustness of ROX. Another reason that makes
ROX robust is that our approach uses a chain sampling technique to avoid
a local optimum during its search for the sequence of operators to ex-
ecute. Moreover, ROX can detect the correlations between two attributes
by sampling the operator that joins the two tables corresponding to the
attributes. By sampling a sequence of operators, ROX can detect if any
correlation exists between several attributes. ROX does not only detect
the existing correlations, it also naturally exploits these correlations in its
decisions which operators to execute next.

Efficiency: Static query optimization always runs the risk of spending too
much time on optimization, such that it would have been faster to go with a
maybe slightly worse plan that was found early, or spending too little time
on optimization failing to avoid a very bad plan. As we have explained
in Section current optimizers precompile some plans to avoid the
long re-optimization phase of their corresponding queries, and therefore
might run into the risk of executing a bad plan. ROX can overcome this
problem by controlling the amount of time spent on optimizing a query.
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Since ROX intertwines (sampling-based) query optimization work with
query evaluation, it becomes possible to strike a balance between these
two query evaluation cost factors. ROX can decide to invest more or less
resources in optimization based on an estimation of the execution cost of
the query (which is re-estimated after every optimization and execution

step).

Although the ROX approach is explained in the context of XQuery, we
emphasize that the proposed optimization strategy is general enough to
be used for other query languages, like SQL and SPARQL.

1.3 Thesis Structure

Chapter [2| starts by giving a background overview on query optimization
in traditional relational compile-time database systems, and then reviews
some of the related work in the literature.

In Chapter |3}, we introduce the building blocks of the ROX approach:
join graph, and sampling and estimation techniques. We also present the
notations that will be used in the subsequent chapters.

The ROX optimizer is described in detail in Chapter|4] In this chapter,
we direct our focus on explaining ROX in the context of database systems
that support full materialization. We start by presenting the algorithm of
the ROX approach, and then describe the chain sampling process while
showing the differences between the theoretical and implemented versions.

Since a prototype of ROX is implemented on top of the relational data-
base system MonetDB/XQuery [3} 20], Chapter [5| gives a quick description
of the storage structure and operators in MonetDB, and some details about
the implementation of the sampling and execution of operators in Monet-
DB/XQuery. Finally, experiments evaluating the performance of ROX are
presented.

Chapter [f] presents a variant of the original ROX algorithm that is
suitable for database systems with a pipelined execution scheme. First, the
main differences between the two algorithms will be described. Afterwards,
the algorithm of the new ROX variant is given and explained in details. Last
but not least, experiments evaluating the new ROX variant and comparing
it to the original one are presented.

We end with a summary and a conclusion of the thesis in Chapter [7} in
which we also present some possible future research directions.
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The first part of this chapter serves as a short background for the subject of
query optimization in database systems, and can therefore be skipped by
readers who are familiar with the topic. In the second part of the chapter,
we give an overview of the related work.

2.1 Background

Database Management Systems (DBMS) were introduced to satisfy the
need to organize, store, query and manipulate large amounts of data. In
the early database systems, data was represented in a tree-structured file
or a graph/network model. The architecture of these databases required
pre-knowledge of the data organization in the machine to access it. The
necessity to efficiently access and search the stored data without the know-
ledge of its internal representation (referred to as data independence) was
the motivation behind the relational model proposed by Edgar Codd at the
beginning of the 1970’s.

Besides the notion of data independence, the power of the relational
model arises from the proposed relational storage structure and algebra.
The relational model structurally organizes data in n-ary relations (or tables).
The relational algebra defines a set of operators with which relations can be
manipulated. Examples of operations are: selecting from a relation tuples
that satisfy a given predicate, joining matching tuples from two different
relations, and grouping tuples in a relation that partially share similar data
values.

Users interact with the database by issuing declarative queries, written
in a high-level language, in which they only need to specify the needed
data without worrying about the location and structure of the data or how
their request will be answered. It is the task of the database system to find
and retrieve the requested data, and construct the result to be returned
to the user. The process of answering a user’s query consists of several
phases (shown in Figure [2.1)):
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Query Execution
Phases

User/Application

Query

Parse Tree

Eﬁ@ Result

Logical Plan

Physical Plan

| Execution Engine

Figure 2.1 Phases of query processing

Parsing: The parsing phase is responsible for constructing an in-
ternal representation of the query, called parse tree. The parse tree
corresponds to the query’s structure.

Compilation: Compilation consists of converting the parse tree into
an initial logical plan which consists of a sequence of algebraic
operators that can produce the query’s result.

Optimization: This phase optimizes the logical plan into an equival-
ent plan that is estimated to be cheaper to execute. In this thesis, a
cheap plan refers to a plan that executes in a small amount of time,
hence the optimization phase consists of a search for the fastest plan.

Execution: In this phase, the plan generated by the optimizer is
executed, the result of the query is constructed and returned to the
user.

2.1.1 Optimization in Databases

Optimizer’s Tasks

10

Optimization is the hardest and the most complex phase of processing a
query. To find the cheapest (i.e. fastest) plan, the optimizer has to make
two kinds of decisions:

1.

Choosing the type and execution order of operators - The type and
the order of the operators in the plan largely determine the amount
of investment needed to execute the query. Using algebraic rewriting
rules, the optimizer can reorder a set of operators to make their execu-
tion more efficient. Other rewriting rules replace a set of operators in
the plan with a more efficient sequence of operators, e.g. substituting



Background

TAu=42 A Cv=101 A Ax=B.x ™A x=B.x
PAy=Cy DA y=C.y B

/ N\ / N\

X C TAu=42 0C.v=101
/N | |
A B A C

a Two different algebraic plans containing selection, cartesian product, and join
operators. The two plans correspond to the same query and return the same result
although their operators are ordered differently. We say the two plans are
equivalent. It is the task of the optimizer to reorder the operators to find a better
plan. If the select operators are highly selective, the optimizer should push them
below the join to reduce the size of data generated and processed. Moreover joins
can be reordered such that the most selective join is executed first. Note that the
cartesian product (X) and selection (04 x—=pB.x) operators between the two tables
A and B are replaced with a join operator (><I4 y—B.x)-

IdxJoing ,—py

N

HashJoinA_y:C.y B

PN

IdxLookupg ;,—47 IdxLookupcy—101

| |
A C

b The physical plan chosen by the optimizer. The
optimizer decides to implement the select operators as
index-lookups. One of the joins is executed as
hash-based join, while the other uses an index-based
implementation.

Figure 2.2 Optimizer’s tasks: determining the best order and physical implementation of
the operators in the plan.

a selection and a cartesian product with a join. An example is shown
in Figure The two plans are equivalent, i.e. they correspond to
the same query and return the same result. If the selection predicates
are highly selective, it is more efficient to push the select operators
below the joins. This reduces the size of generated data, and hence
the processing time of the joins. Similarly the joins can be reordered
such that the most selective join is pushed further down. Note that
the cartesian product (x) and selection (04 y—p.y) Operators between
the two tables A and B are replaced with a join operator (>4 y—p.x)-

11
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2. Choosing the physical implementation of operators - An algebraic

operator denotes the type of operation to be performed on a set of
relations but does not specify the way it should be carried out. In
fact, for each algebraic operator in the database, there exist several
corresponding physical operators. A physical operator is simply the
algorithm that implements the functionality of the algebraic operator.
For instance, the join operator can be implemented as a nested loop
join, a sort-merge join, or a hash-based join. When indices are
available, a select operator is implemented as either a table scan or an
index lookup depending on the selectivity of its predicate condition.
It is the job of the optimizer to map each operator in the plan to the
appropriate physical implementation such that the resulting physical
plan has a fast execution. Figure depicts one possible physical
plan corresponding to the second logical plan shown in Figure
The select operators are implemented as index-lookups. A different
physical operator is chosen for each of the joins: one is executed as a
hash-based join, while the other uses an index-based implementation.

To perform the above two tasks, the optimizer is usually provided with the
following:

1. Search space of plans: The search space includes all equivalent plans

that can be generated for a single query. Each plan corresponds to
one possible ordering of the operators and one of the different com-
binations of physical implementations supported for each operator.

. Enumeration algorithm: An enumeration algorithm explores the

search space looking for good candidate execution plans.

. Cost model: To assist the enumeration algorithm in assessing how

good a candidate plan is, the cost model computes for a given plan
in the search space an estimation of its cost. The cost of a plan is a
quantitative estimation of the resources consumed while executing
the plan. The cost function consists of a weighted formula of the
combination of resources chosen to be measured (e.g. CPU time, I/O
cost, memory, ...).

A good quality optimizer requires an efficient and effective enumeration
algorithm and a highly accurate cost model. Developing these two compon-
ents with the above properties is not a trivial task. We explain these two
components next, but before we proceed, we shall stress that an optimizer
is not required to find the optimal plan for every submitted query. In fact,
a good optimizer is one that satisfies the following two properties:

* Robustness: A robust optimizer ensures that a good (possibly sub-

optimal) execution plan is chosen for any input query, and reliably
avoids picking an expensive plan.
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e Efficiency: An efficient optimizer should not spend a considerably
large amount of time optimizing a query. Ideally it should balance
between the time spent on optimizing a certain query and the time
needed to execute the chosen plan.

2.1.2 Enumeration Algorithm

An efficient enumeration algorithm is one that picks from the search space
the most promising candidate plans in a short amount of time. To make
the search efficient, it should explore the search space in a selective way,
disregarding whenever possible the likely expensive categories of plans.
Next, we briefly describe a few of the existing categories of enumeration
algorithms:

1. Exhaustive top-down: This strategy starts from the root operator of
the plan and walks its way down. For each encountered operator, all
possible implementations are considered, then combined with the
possible alternatives for its children operator(s). When all required
operators are added to the plan, the execution with the cheapest cost
is picked.

2. Exhaustive bottom-up: It starts by considering all different ways to
access each single relation. Then all possible plans are generated by
iteratively considering every remaining operator and appending it to
each of the already produced plans. When all required operators are
added to the plan, the execution with the cheapest cost is picked.

3. Greedy bottom-up: This strategy is similar to the exhaustive bottom-
up approach; however, at each step, only the cheapest enumerated
plan is kept and extended with the next operator.

4. Heuristic-based: This approach generates an execution plan by mak-
ing a sequence of decisions based on heuristics. Examples of com-
monly used heuristics are: (i) if available, use indexes to scan a
relation, (ii) first join the two relations with the smallest estimated
result cardinality, (iii) use an index-based join when one of the joined
relations has a corresponding index, (iv) use a sort-merge join if one
of the join’s input is sorted, (v) consider only left-deep plans.

5. Branch-and-Bound: With this approach, a plan is first generated
using the heuristic-based technique. Then, using algebraic rewriting
rules, the operators in the plan are reordered to generate a better plan.
Branch-and-bound pruning is used to disregard any permutation
that generates a plan with a cost higher than the best so far.

Some of the above techniques apply an exhaustive search to the space of
plans. Although this guarantees that the best plan is found, for non-simple
queries, the search space can be prohibitively large, which can result in a

13
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slow and unacceptable performance of the optimizer. The other techniques
explore only part of the search space and run the risk of disregarding good
plans. As we will see in Section other more sophisticated enumeration
algorithms have been proposed (e.g. randomized search techniques).

2.1.3 Cost Model

14

The cost of a plan is derived by combining the estimated cost of all its
operators. The execution cost of an operator is affected by two factors:

1. The amount of data it has to process.

2. The CPU and I/O costs of the operator. The first refers to the com-
putational complexity of the algorithm implementing the operator’s
functionality, while the latter denotes the number of disk blocks that
are accessed during the execution of the operator.

To estimate the amount of data an operator has to process, the cost model
should be able to access statistical information collected on base tables, and
to estimate the size and characteristics of intermediate data returned by operators.
We will shortly describe the techniques used to achieve this. The CPU
cost of an operator is derived from the implementation of the operator
using algorithmic complexity theory. Given some knowledge about its
data input, the I/O cost of an operator is determined using cost formulas
derived and integrated in the cost model.

Statistical summaries For every table in the database, statistical informa-
tion is collected. A piece of statistics is related to either the whole table or
to one of the table’s attributes. Examples of statistics are:

¢ Statistics about a table: Statistical information concerning a table
consists of, among others, the total number of tuples, the average
size of a tuple, and the number of blocks used to hold all the tuples
of the table.

¢ Statistics about an attribute: Statistical information concerning an
attribute consists of, among others, the highest/lowest (or second
highest/second lowest) values of the attribute, and the value count
(number of distinct values) of the attribute. To capture the value
distribution of an attribute, histograms can be built in which, for
example, the frequency of the distinct values of the attribute can be
collected.

Statistics can also be collected for multiple attributes belonging either to
the same table, or to several different tables. This is an important kind
of statistics, since it allows the optimizer to capture correlations between
two or more attributes. Unfortunately this type of statistics is not easy to
build. One proposed technique to capture the correlation between two
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attributes is to summarize the number of their distinct pairs of values.
A more detailed representation uses 2-dimensional histograms. As we
have seen in Section these two techniques still have some drawbacks.
In general, the challenge in collecting statistical information that allows
accurate cardinality estimations is in having a representative view of the
stored data while keeping the size of the statistics as small as possible.

Result Size Estimation techniques These techniques are used to estim-
ate the selectivity of operators. This is accomplished by trying to accurately
propagate the statistical information collected about base tables through
the operators in the plan to estimate the cardinality and in some cases the
value distribution of the output data of each operator. To simplify this
complex task, cost models usually make the following assumptions:

* Uniformity of the distribution of values within an attribute’s domain.
¢ Attribute Value Independence (AVI) which supposes that the value of

an attribute is independent of that of (an)other attribute(s) belonging
to the same or different relations.

We have given in this section a quick introduction to query optimization in
classical database systems. We now proceed with reviewing some of the
most important work related to ROX, our run-time optimizer for XQueries.

2.2 Related Work

Since the join operator is one of the most expensive operators in query pro-
cessing, but also a heavily used one, the focus of ROX, as other optimizers,
is on solving the join ordering problem. We stress that, due to the existence
of many XPath steps in a typical XQuery query, a relational XQuery plan
contains more joins than a typical relational SQL plan, making the optimiz-
ation of the order of joins even a bigger necessity in XQuery. In this section,
we present, on the one hand, existing solutions that optimize the order of
joins at compile-time, and, on the other hand, suggested techniques for
run-time optimization. As this thesis uses sampling techniques to estimate
the cardinality and cost of operators, we refer the reader to [100] for a
survey on sampling techniques. The sampling techniques used in ROX are

described in Sections and

2.2.1 Join Ordering at Compile-Time

In this section, we give an overview of the existing compile-time join
enumeration algorithms in the relational context, and then quickly review
the proposed XML query optimization techniques.
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The join ordering problem has been extensively researched over the last
three and a half decades, leading to the development of several compile-
time optimization algorithms. Given an n-way join query and 7 different
ways of evaluating a join, these algorithms should pick the optimal order
of joins and the best join implementation to use among the n!i" possible
choices. To accomplish this, compile-time optimizers explore the search
space of plans using different enumeration strategies, and a cost model
that associates an execution cost to each candidate plan.

Relational Join Ordering Using Deterministic Algorithms

The pioneering work in enumeration algorithms for ordering joins is the
optimizer proposed in System-R [113]. It uses heuristics and dynamic pro-
gramming to exhaustively explore in a bottom-up manner the search space
of candidate plans while taking into consideration “interesting orders”. To
limit the search, the approach focused only on left-deep plans, and con-
sidered cartesian products only after determining the optimal order of joins.
The System-R optimization framework is not easily extendible with new
logical transformations (beyond join ordering) and new physical operators.
This has led to the development of the extensible transformation-based
optimizers: Starburst [62] and Volcano [54].

In Starburst, a query is optimized in two rule-based phases. The
first [102] consists of rewriting the query by, for instance, merging nested
subqueries, pushing down projections, and reordering the selections. This
phase does not have access to the cost model and is heuristics-based. The
second phase optimizes the order of joins in the query by exhaustively
exploring the search space in a bottom-up fashion while using dynamic
programming, pre-defined grammar-like rules and a cost model [87, [go].
The Starburst optimizer can take into consideration cartesian products and
both left-deep and bushy plans.

The Volcano optimizer evolved from Exodus [53] and uses two types of
rules to optimize a query. The first consists of transformation rules that
map an algebraic expression into an equivalent one, while implementa-
tion rules, the second type of rules, are used to map the operators in an
algebraic expression into the best corresponding physical algorithms. The
enumeration algorithm uses dynamic programming in a top-down fashion
with memoization, and considers left-deep and bushy plans. Memoization
avoids the execution of redundant work: an optimization task that has
already been accomplished is not performed a second time. The advant-
age of this top-down approach is its ability to perform early pruning of
sub-plans that are known to be suboptimal. DeHann et al. [§0] proposed
a top-down enumeration algorithm that is not based on transformations,
hence allowing the dynamic programming optimizers to exploit the be-
nefits of the top-down approach. Their approach considers bushy trees
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without cartesian products. The Volcano and Starburst transformation rule-
based optimizers suffer from one disadvantage of using a large amount of
memory to store all enumerated plans [40} [1o1].

Dynamic programming has also been used by other work as an enu-
meration technique to exhaustively explore the search space of joins. The
generalization of the System-R approach to bushy plans is given in [97].
Vance et al. propose to use dynamic programming to optimize multi-way
joins while considering bushy plans and cartesian products [126]. The
techniques presented in [18} 49, [47, [98| [T09, 112] suggest different dynamic
programming algorithms to efficiently enumerate possible join ordering
while considering bushy trees excluding cartesian products and includ-
ing other types of joins that in general are not freely re-orderable, e.g.
outer-joins and anti-joins.

Join order enumeration algorithms targeting specific join graph shapes
have also been proposed. For acyclic graphs with n joins and a cost
model satisfying certain properties [68], the work in [85] suggests the KBZ
algorithm which can return the optimal plan in O(n?). An extension to
cyclic join graphs has been proposed in the same paper but it no longer
guarantees the generation of an optimal plan. For the same class of join
graphs and cost models, Cluet et al. [37] present a theoretical study of
the enumeration problem when considering left-deep plans and cartesian
products.

Some heuristics-based join enumeration techniques have been proposed.
We first mention those that adopt a greedy approach, building the execution
plan step-by-step, adding one join at a time [43} [86]. Techniques mixing
dynamic programming and heuristics/greedy algorithms have also been
suggested to handle larger queries [84) [99]. Kossmann et al. [84] apply
dynamic programming iteratively during the query optimization: it uses
dynamic programming to optimize the order of a subset of the joins in the
query, then restarts dynamic programming using the already selected plan
as building block to order a second set of joins, and repeats the process until
all joins are part of the final plan. The work in [g9] proposes to simplify the
initial join graph of a complex query by ignoring non-promising join edges
and then explores the simpler and smaller graph using the exhaustive
search described in [98].

Some of the relational compile-time optimizers described above explore
the search space of plans exhaustively resulting in an unacceptably large
amount of time spent on optimization. The other approaches use heuristics
to reduce the number of enumerated plans, and hence risk disregarding
the (near-)optimal ones. Moreover, the quality of produced execution plans
highly depends on the quality and accuracy of collected statistics and cost
model. As we have explained in Chapter |1} the latter are often not accurate
and not up-to-date which might result in bad plans picked for execution.
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Relational Join Ordering Using Randomized Algorithms

To address the prohibitively exhaustive search of the early dynamic pro-
gramming algorithms when optimizing complex and large queries, ran-
domized optimization techniques have been proposed. These algorithms view
the search space of plans as points in a high-dimensional space. The
different plans are connected by transformation rules named moves, e.g.
join commutativity and associativity. The algorithms navigate in the space
by performing random moves along the edges between the plans. The
advantage of randomized optimization techniques is that they have a con-
stant space overhead, and although slower than heuristics and dynamic
programming approaches when optimizing simple queries, they are faster
for large queries. A survey of the existing randomized optimization tech-
niques can be found in [119]. We present some of the most important
algorithms next.

Iterative Improvement (72, [73) [123) [122] starts with a random plan and
iteratively performs a move to a new plan with a lower cost. When none of
the neighboring plans have a lower cost, the whole process is re-initiated
with another new random plan. This is repeated until a time limit is
reached, then the plan with the lowest cost is returned.

The problem with Iterative Improvement is that it might get trapped in
local minima. Simulated annealing [73) |76, 123} 122] is a variant of Iterative
Improvement which overcomes this drawback. Starting with a random
plan, it makes several random moves always accepting those that yield a
lower cost plan. To avoid a local minimum, it sometimes climbs the hill
by following, based on some probability, moves that result in a plan with
a higher cost. This probability decreases as optimization proceeds until
reaching the value 0. When optimization ends, the plan with the lowest
cost is returned for execution.

The Two Phase Optimization [72} [73] algorithm combines the above
Iterative Improvement and simulated annealing approaches. The technique
consists of first finding a local minimum and then exploring the space
around it in search for a global optimum. This is performed in two phases.
The first phase starts by applying Iterative Improvement for a short time
to find several local optima. Then the algorithm proceeds by starting
simulated annealing using the cheapest plan found during the previous
phase. A low probability is used to avoid climbing considerably high hills.

The quality of the plan generated by the Iterative Improvement and sim-
ulated annealing enumeration algorithms depends highly on the quality of
the starting random plan. To guarantee better results, Swami et al. [122]
have proposed to combine the two techniques with heuristic algorithms
which generate a good quality initial plan to be fed to the randomized
optimization approaches. The work in [48] proposes to explore the space
of plans by performing a randomized walk without applying tree trans-
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formations. As such, the considered candidate plans are chosen uniformly
at random from the search space and compared on their estimated cost,
eliminating the overhead of performing tree transformations.

In addition to the above optimization techniques, genetic algorithms
have been proposed to solve the join ordering problem [17, 51, [119]. These
algorithms simulate the biological phenomenom of evolution in their search
for an optimal plan. The idea is to start with a random population of plans,
each with its own cost. Pairs of plans are picked from the population
and “crossed-over” generating new “offspring” plans which hold some
of the features of their parents. During the cross-over, “mutations” can
be introduced in the offspring plans. The parents and children with the
least cost survive to the next generation. The algorithm terminates when
the entire population consists of the same “fittest” solution or after a
predetermined number of generations. The fittest solution of the last
generation is returned for execution.

Although the randomized algorithms described above succeed in efficiently
optimizing large queries, they still depend on statistics and a cost model
to assess the quality of enumerated plans. However, the statistics and cost
model are sometimes inaccurate resulting in bad optimization decisions.
Moreover, as these algorithms have a random behavior, they provide no
guarantee on the quality of the produced execution plan, especially that
the latter highly depends on the quality of the starting random plan. Even
when the starting plan is generated using a deterministic enumeration
algorithm, it might still be far from optimal due to inaccurate statistics and
cost model used during the deterministic plan enumeration and selection.

Join Ordering in XML

To optimize queries in the XML context, some researchers have suggested
to reuse the already mature relational optimization techniques. However,
these techniques have proved to be insufficient [16] and new XML-specific
optimization solutions have been proposed. We quickly review these next.
Before we proceed, we point to the fact that, unlike the relational case,
different XML database systems adopt different algebras (i.e. relational al-
gebra [20], tree algebra [78]) and structural operators (i.e. staircase join [57],
stack tree [12], TwigStack [26], ...). This adds to the complexity of the
optimization problem in XML.

Accurate estimation of the cardinality of intermediate query results (for
XML optimization purposes) has been extensively researched, resulting
in a multitude of techniques [10, 34 [45) 46} [104), [105} 106 [125] [1277} [128].
However, these still do not cover the full problem of XQuery intermediate
result size estimation. They all propose to build a synopsis and/or histo-
gram that captures the XML document structure and element values (in
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various forms). Some techniques cover the cardinality estimation of only a
subset of the XPath language, others do not support queries with value
constraints, and some cannot efficiently handle updates to the document
or recursive data. Moreover and generally speaking, cardinality estima-
tion techniques are based on the attribute value independence heuristic,
which assumes independence between the values of different attributes
and elements, resulting in inaccurate estimations in some cases.

Similar to the join operator in the relational context, the structural
join which evaluates one or more XPath steps is a central operator in
XML query evaluation. Therefore, some work has focused on proposing
techniques to determine the best execution order of structural joins in an
XQuery. Wu et al. [129] present several structural join ordering algorithms,
implemented in the Timber XML database system [77]. They stress that
some of the heuristics, e.g. limit the search to left-deep plans, introduced
to solve the relational join ordering problem, result in sub-optimal plan
if applied in the context of XML. Stating that exhaustive search through
dynamic programming can be expensive, they propose a new dynamic
programming algorithm with pruning. Another dynamic programming
algorithm with aggressive pruning combined with two different heuristics
is suggested. Finally, they present an algorithm which focuses on the
generation of only fully-pipelinable plans.

May et al [92] propose a join ordering algorithm for Natix, a native
XML database system. They show that the optimizer can find better plans
if the search space is extended to also include non left-deep plans and
to disregard document ordering preservation during query optimization.
In the latter case, a sort operator is added to the final plan to restore the
correct order. Tested in the context of Natix, the work in [80] focuses
on optimizing the evaluation of XPath steps by ordering the execution
of navigational primitives such that the I/O operations are performed as
efficiently as possible. All operators requiring 1/O access are grouped and
executed together employing efficient 1/O strategy, e.g. either sequential
scans or asynchronous I/0O.

To reduce the search space of plans and the complexity of the enumera-
tion algorithm, optimization in the Lore system decides greedily about the
choice of physical operators and makes use of some heuristics rules [95].
In [94], McHugh et al. describe 6 enumeration algorithms and a few post-
optimization techniques to efficiently optimize branching path expressions
in the context of the Lore system. The proposed algorithms adopt a top-
down approach and use aggressive pruning heuristics along with greedy
choices focusing on the generation of left-deep plans. As various pruning
techniques are employed, each algorithm examines a different subset of
plans from the search space.

Grust et al. [60] suggest to outsource the task of ordering the joins in
an XQuery to relational database systems. They start by noting that the
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performance of relational optimizers is unsatisfyingly low when handling
XQueries. This is due to the fact that XQueries usually compile into plans
having odd shapes in which joins are scattered around with blocking
operators in between, disallowing the optimizer to freely reorder the joins
in the plan. Therefore, they present a method that reorders the operators in
the relational XQuery plan such that blocking operators are moved towards
the root of the plan and joins are grouped into clusters named join graphs.
These join graphs provide an order-free representation of the joins in an
XQuery. They have shown, through experiments, that relational database
systems are capable of efficiently optimizing the isolated join graphs into
join trees that execute fast while breaking-up and stitching complex path
expressions. Although this work has shown that the optimization of joins
in XQuery can be delegated to a relational optimizer, we stress that the
problem of inaccurate and not up-to-date statistics and cost model and
their impact on the quality of generated plans persists and is still not
solved.

As can be seen from the above presentation, the optimization techniques
targeting join ordering in the XML context are still few and considerably
primitive. Efficient and robust ordering algorithms are highly needed.
Moreover, we notice that the proposed techniques, except for [60], do not
take into account relational joins, i.e. XPath steps and relational joins are
not optimized indifferently of each other. ROX, our Run-time Optimizer for
XQueries, can robustly and efficiently determine a (near-)optimal ordering
of the joins in an XQuery, while seamlessly optimizing the order of both
relational joins and structural joins. In fact, the isolated join graphs of [60]
are used as input to the ROX optimization process. ROX not only re-orders
XPath steps and relational joins, it also breaks-up and stitches complex
path expressions and determines the optimal execution of the step by
reversing its axis if necessary.

The quality of the decisions made by the previously described relational
and XML compile-time optimizers highly depends on estimated values
about, among others, document characteristics, intermediate results car-
dinality, and system load. As explained in Chapter |1} the accuracy of
the estimations is never guaranteed, possibly resulting in poor quality
decisions and therefore bad plans picked for execution. Moreover, these
optimizers cannot detect correlations among the queried data resulting in
more bad optimization decisions. To overcome the above problem, other
types of optimization approaches have been proposed to operate at run-
time to benefit from the available accurate result size and cost observations.
The next section gives an overview of the available adaptive and run-time
join ordering algorithms.
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2.2.2 Run-time Optimization
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The use of run-time techniques to mitigate the problems faced by compile-
time optimizers has led to various proposals in the area of Adaptive Query
Processing, where the general principle is that the query plan is determined,
or can be changed, while the query is executing. A good survey of this area
can be found in [41]. We present here the most important of the proposed
techniques.

Dynamic Plans

Dynamic (also known as parametric) query evaluation optimizes the query
at compile time into several candidate plans. Each such plan is optimal for a
set of possible values that certain parameters might take at run-time. These
parameters might include the value of variables in the query, the amount of
system resources available at run-time, and the data characteristics. When
at run-time the value of these parameters is known, the optimal plan is
picked and executed. The choice of the appropriate (sub-)plan is performed
before the start of execution or during execution at materialization points.
The latter allows the use of intermediate results characteristics to decide
which sub-plan to execute. The dynamic plans technique is suitable for
scenarios where the queries are compiled once and executed repeatedly,
possibly with different parameter values. The main challenge with this
approach is in the explosion of the number of plans when considering the
space of parameters values, and in the decision which of the plans to keep
until run-time.

Dynamic plans were first proposed in [38| [55] where a choose-plan
operator is introduced to connect the candidate plans, and to choose
the optimal one to execute based on run-time information. The choose-
plan operator might be inserted anywhere in the execution plan. The
work in [38] devises a search strategy based on dynamic programming
to determine the dynamic plans and insertion points of the choose-plan
operators. The work in [[74), [75] uses parametric optimization to optimize
queries while focusing on the buffer size as the unknown parameter. They
propose to use randomized algorithms instead of dynamic programming to
generate the dynamic plans. Contrary to the previous work, this technique
does not incur any run-time overhead.

There exists a multitude of works [50} 66} |67, (107} [110] that analyze the
parametric query optimization problem and its complexity while focusing
on cost functions that might be easier to optimize for. The studied cost
functions were linear [50, 66, [107], or piecewise linear [66], or non-linear [50,
67, [107] in the given parameters.

Performing parametric query optimization for infrequently executed
queries is not cost effective. To solve this problem, Bizarro et al. [1g] have
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recently proposed to progressively perform the parametric optimization of
a query. Whenever the same query is submitted with different parameters,
the optimizer decides whether to reuse a previously generated plan or to
optimize the query for the specific values of the parameters and add the
produced plan to the complete parametric plan. A competitive technique
similar to the ones described already was proposed in the DEC RDB
system [13]]. It consists of running multiple access methods in parallel to
determine the most promising one with which to execute the query. Once
the winner is chosen, all other executions are stopped.

Mid-Query Re-Optimization

Instead of generating several potentially optimal plans at compile-time,
and decide at run-time which ones to choose, re-optimization techniques
generate a single plan, and during the execution phase re-run the optimizer
if the current plan, due to unexpected data selectivities or changing system
resources, is detected to be sub-optimal. The approach consists of inserting
checkpoint operators in specific locations in the plan to monitor at run-
time the flowing tuples and collect statistics about essential cost factors
(e.g. result size and selectivity of operators). If the statistics observed at
run-time do not coincide with the estimated values, re-optimization is
initiated. The main challenge in this approach is to determine where to
place the checkpoints, which statistics to collect, the necessary gap between
the actual and the estimated values for which re-optimization should be
triggered, and the best way to switch plans.

The approach in [79] uses heuristics to determine whether to trigger
the re-optimization of a query. It computes for each estimate made by
the optimizer an inaccuracy potential level, and inserts checkpoints in
the plan at these operators that have a high inaccuracy potential level. A
follow-up proposal [91] studies several kinds of checkpoints: lazy placed
above materialization points, eager placed anywhere in the plan, forced
materialization placed in useful location in the plan introducing new mater-
ialization points. It computes for each checkpoint an approximate validity
range that defines an upper and lower bound outside which the sub-plan is
considered sub-optimal. Babu et al. [15] propose an alternative to validity
ranges called bounding boxes. The idea is to take a proactive approach to
re-optimization by predicting, preparing and planning, during the initial
optimization itself, for a possible re-optimization at run-time. To achieve
this, they compute, for each uncertain cardinality estimate, a bounding
box that represents the uncertainty in the estimate, and that is supposed to
cover the actual cardinality. The bounding box is then used to define a set
of “switchable plans” that are robust to possible errors in the estimations,
hence reducing the need for re-optimization. Switchable plans are plans
among which it is easy and cheap to switch. The techniques presented
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in [89} [96] study the problem of re-ordering left-deep pipelined joins at
run-time. The first re-orders the inner and outermost tables of indexed
nested-loop joins while the second considers only inner tables of both
indexed nested-loop and hash-based joins. Li et al. [89] monitor join se-
lectivities throughout query execution and reorder operators to execute
the more selective joins first; however, they assume independence between
the selectivity of join operators. In [96], during the execution of a given
plan, alternative plans are also sampled to estimate the selectivities of joins
and then decide if re-ordering is required. This approach might need to
sample a large number of alternative plans. The work in [42} [124] studies
the re-optimization of the execution order of operators in subplans of
federated queries.

2.2.3 Learning Techniques
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We quickly mention some other proposed techniques that, similar to the
re-optimization approaches, monitor the execution of a plan, not to re-
optimize it, but to feedback their observations to the optimizer to adjust
the statistics and cost model [11), 24} 25, 31, 32, 63 118} 120]. Chaudhuri et
al. [30] stress the fact that the aforementioned techniques are limited in
their ability to monitor the execution of the plan and hence to improve the
optimizer’s decisions. They propose to increase the learned knowledge by
monitoring, in addition to the execution plan, several alternate execution
paths. These efforts all fall under the umbrella of improving optimizer
robustness; however the learning curve might be long before the estimates
become accurate.

The classes of techniques described above are all plan based. The first type
of techniques constructs several plans and picks the one to execute based
on run-time information. The second class of techniques constructs a single
plan and re-optimizes it when the data characteristics and cost observed
at run-time differ from the estimates made during optimization. The
third group of techniques constructs a single plan, monitors its execution
to learn about data characteristics, and updates the statistics and cost
model accordingly. We stress that the quality of the plans generated
and executed still depends on the accuracy of the statistics and the cost
model, even though the second class of techniques attempts to recover
from estimation errors. Moreover, they still suffer from the overhead of
collecting and maintaining statistics. Finally, they cannot anticipate nor
detect the existence of correlations. ROX goes beyond these approaches
by continually intertwining optimization and execution, and effectively
basing all decisions on cardinalities and costs accurately observed through
sampling, removing any dependency on a priori collected statistics and a
pre-built cost model, hence making it much less vulnerable to estimation
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errors and undetected correlations. In short, the described techniques have
a reactive behavior and cannot detect early enough selective correlations
that can speed up performance. On the contrary, ROX is a proactive
optimizer which does not depend on any statistics or cost model, and can
detect and exploit correlations during optimization.

2.2.4 Eddies

Unlike the previous plan-based techniques, this routing-based approach [17)
108]] views query execution as a process of routing tuples through the most
efficient sequence of operators based on properties observed in the data.
Eddies can be seen as an approach in which the query evaluation plan is
continuously reordered on a tuple-by-tuple basis. The introduced eddy op-
erator acts as a router for the tuples. It monitors the execution and makes
the routing decisions for each tuple. It also collects statistics about the
query execution and uses these to make the appropriate routing decisions.
Adapting to the changes in data characteristics consists of simply routing
the tuples through a different order of operators. We note that Ingres, one
of earliest adaptive query processors, had already incorporated a basic
tuple-based routing strategy [121].

The common aspect between Eddies and ROX is that they completely
interleave optimization and execution steps; however, contrary to ROX,
no concrete execution plan is defined in eddies as different tuples might
follow different routes of operators. Row-routing in Eddies presents a high
opportunity for re-optimization but it contains four main drawbacks:

1. The continuous re-ordering of operators incurs a large optimization

cost.

2. Eddies need to maintain query execution states, which can become
expensive.

3. They rely on symmetric operators resulting in restrictiveness in the
number of candidate plans considered for optimization.

4. Each tuple is routed along a greedy locally optimal path without
considering the overall execution cost.
ROX, on the other hand, manages to completely interleave optimization
and execution steps while avoiding the above disadvantages.

2.2.5 Database cracking

Another fundamentally different technique that is worth mentioning is
database cracking [69} [70, [83]. The motivation behind this approach is
to achieve a self-organizing database system by continuously learning
from every executed query. Database cracking suggests to physically re-
organize the database store into smaller pieces using the tuples touched
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by the executed query such that the execution of subsequent queries
touching the same, overlapping, or even disjoint pieces of data is speeded
up. Another benefit of this approach is in its ability to adapt to different
query loads. We find that database cracking and our research work share
the same principle: rendering database systems and their components
self-dependent. Database cracking aims at making the database system
more self-organized while we aim at developing an autonomous optimizer
which makes its decisions without depending on any knowledge provided
by statistics and cost models. We also think that these two techniques are
complementary: ROX can use the cracked tables as indexes and can adapt
its optimization decisions based on whether the queried table is already
cracked or not.

2.3 Conclusion
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In this chapter, we began by giving a quick overview on query optimization
in database systems. We then reviewed work related to the proposed ROX
approach. We first focused on compile-time techniques for ordering join
operators in the context of both relational and XML database systems. We
then proceeded by describing run-time optimization approaches, some
of which are proposed to counteract optimization errors resulting from
inaccurate estimations and the inability to detect correlations.
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ROX focuses on optimizing the execution order of the XPath steps and joins
in an XQuery. This is achieved at run-time by interleaving optimization
and execution steps. Therefore, an order-independent representation of the join
and step relationships in the XQuery needs to be conveyed to the run-time
environment of the database system, as part of the complete execution
plan. We have chosen for an adapted form of a Join Graph as our order-
independent representation. The optimal ordering of the step and join
operators in the XQuery is decided based on the result size of the operators.
Therefore, ROX needs a way to estimate the size of the operators in
the input join graph. This is accomplished by means of sampling-based
techniques, which are required to be supported by the underlying database
system. In this chapter, we describe the foundations on which ROX builds:
the join graph input to ROX, and the sampling techniques used.

3.1 Join Graphs

Join graphs have already been used in relational database systems to
represent the collection of joins in a query whose execution order should
be optimized. Since we have a similar purpose, we use an adapted form of
join graphs to represent the XPath steps and relational joins in an XQuery.
In this section, we define the notion of join graph, explain its semantics,
and then describe the technique we adopt to find the join graphs of a given
XQuery.

3.1.1 Join Graph Definition

We first give the definition of a join graph and then describe with more
details its vertex and edge components.

In the relational context, a join graph, also referred to as query graph,
is defined “to have a node for each relation mentioned in the query. And
for each join operator in the query expression, for each predicate conjunct,
there is an edge labeled with that conjunct” [112]. “The graph does not
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Join Graph

Vertex
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impose a partial ordering on the operations” [112]. We adopt the same
definition for our join graphs and tune it to fit the XQuery context.

Definition 3.1.1. A Join Graph G = (V,E) is defined as an edge-labeled
graph where:

¢ avertex v € V represents a database relation containing XML nodes

or values which is input to join and path step operators in the query.

* an edge e € E represents a path step or join operator in the query.

Definition [3.1.1]is similar to the join graph definition used in the rela-
tional context. The only difference is that the vertices and edges in our
new definition are made more XML specific.

Following is a more detailed definition of a vertex in a join graph.

Definition 3.1.2. Given a join graph G = (V,E), a vertex v € V can
correspond to:
1. the root of the XML document doc.xml. The vertex v is then annotated

with the string droot r The relation associated with v is a singleton
oc.xm

containing the tuple in the database that corresponds to the docu-
ment’s root. Note that the vertex v may as well represent the roots of
a document collection, and therefore the relation associated with v
consists of the root nodes of the documents in the collection.

2. an XML element type with qualified name gname. The vertex v is then
annotated with the qualified name gname. The relation associated
with v contains all the XML element nodes in the queried document(s)
that have the qualified name gname.

3. an XML text node. The vertex v is then annotated with the string
text(). The relation associated with v contains all XML text nodes in
the queried document(s)

4. an XML text node with an equality or range-selection predicate
pred. The vertex v is then annotated with the string tex;(). The
pre

relation associated with v contains those text nodes in the queried
document(s) with a value satisfying the pred condition.

5. an XML attribute node with name attr. The vertex v is then annotated
with the string @attr. The relation associated with v contains all XML
attribute nodes in the queried document(s) with attr as name.

6. an XML attribute node with name attr and an equality or range-
selection predicate pred. The vertex v is then annotated with the

string @ut;r. The relation associated with v contains all XML attribute
pre
nodes in the queried document(s) with a value satisfying the pred

condition.
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1

<item> <item> 10 <open_auction>
@id =1 4<quantity> @id =1 8<quantity> 1 @id = open_auction0 <quantity>
5 | o | s |

Figure 3.1 The XML tree of an XML document (xmark.xml) inspired by the XMark bench-
mark [4]. The nodes between tags (<>) correspond to XML elements. The attribute nodes
are represented by the @ symbol followed by the name and value of the attribute. The
nodes surrounded by a rectangle are XML text nodes. Each node is associated with a node
identifier number (bold number left top of the node) that is generated by a pre-order traversal
of the tree.

7. a pre-materialized table representing the result of a subexpression,
and containing any type of XML node or value. We give an example
and further explain this vertex type in Example

Example 3.1.3. In Figure we illustrate the different types of vertices
using the document xmark.xml, the corresponding XML tree of which is
shown in Figure The document is inspired by the XMark benchmark [7],
and its content is represented in the XML tree. The nodes in the tree
surrounded by tags (<>) correspond to XML elements. The attribute nodes
are represented by the @ symbol followed by the name and value of the
attribute. The nodes surrounded by a rectangle represent XML text nodes
and contain the value of the node. The number associated to each node in
the tree (bold number at the node’s upper left corner) is the node identifier
generated by a pre-order traversal of the tree.

Figure [3.2]illustrates the different types of vertices listed in Definition [3.1.2]
Along with each vertex v is the table associated with v. The contents of the
table consist of the node identifier of the nodes in the XML tree that match
the vertex.

Now that we have a better insight in what a vertex represents, we give a
more detailed explanation of an edge in the join graph.

Definition 3.1.4. Given a join graph G = (V,E), anedge e = (v,v') € V Edge
with label Ib might represent:

1. an XPath step that computes a step join between the tables associ-
ated with the two vertices v and ¢’ along the axis Ib. The value of
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root
Vertex xmark.xml
Table id

a A vertex representing the root
of the XML document
“xmark.xml”, along with the
corresponding table.

Vertex tEXtZ()

Table id

d A vertex representing all the
text elements with value equal to
2, along with the corresponding
table.

Vertex  quantity

Table id
4
8
12

b A vertex representing the XML
elements with gname “quantity”,
along with the corresponding
table.

Vertex @id

Table id
3
7
11

e A vertex representing all
attribute elements with name “id”,
along with the corresponding
table.

Vertex text()

Table id

¢ A vertex representing all the
text elements in the document,
along with the corresponding
table.

Vertex @id

Table id

f A vertex representing all
attribute elements with name *“id”
and value 1, along with the
corresponding table.

Figure 3.2 The different types of vertices a join graph can contain.

the label Ib can be any of the XPath axes: Ib € {child, descendant,
descendant-or-self, parent, ancestor, ancestor-or-self,
following, following-sibling, preceding, preceding-sibling, self}.

In a join graph, an XPath step edge is depicted as o% where the
label Ib represents the axis along which the XPath step is interpreted,
and the circle o denotes the context set of the step. For instance, the

edge v o=~ v’ stands for the XPath step v/ax::v’.

. a relational join which according to the XQuery semantics computes
a join using a value-based comparison of the tables associated with
both inputs v and ¢’. In this case, the label /b can be any of the
following: Ib € {=,#,<,<,>,>}. Typically, the input vertices v
and v’ of such joins are text- or attribute-nodes. We stress that
this join operator is a normal relational join, and does not perform
the existential comparison defined in XQuery. A relational join is

depicted as v v?, and it stands for the comparison v Ib v’.

Example 3.1.5. In Figure we illustrate the different types of edges.
Figure depicts a step join between the item and quantity vertices. The
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/ .
item O——— quantity

a A step join between the two vertices item and
quantity. The edge represents the XPath step
item/quantity.

/ . /
by item O——— quantity 0——— text()
root —
xmark.xml

O\//

open_auction o/— quantity o/— text()

b Join graph containing 6 XPath steps and 1 relational join with an equality
comparison. The join graph can correspond to several different XPath
expressions and XQueries

Figure 3.3 Edges in a join graph can represent XPath steps and relational joins.

edge item oL quantity represents the XPath step item/quantity. Fig-

ure shows a bigger join graph containing 6 step joins and 1 relational
join with an equality comparison. This join graph can correspond to
several different XPath expressions. One possible XPath expression is
doc(xmark.xml)//item/quantity[./text ()=doc(xmark.xml)
//open_auction/quantity/text()]. The join graph can also represent
several different XQueries. An example of another corresponding XQuery
is the following:

for $i in doc("xmark.xml")//item,
$q in doc("xmark.xml")//open_auction/quantity

where $i/quantity/text() = $q/text()

return $i

Note that although the above two queries are not equivalent (they do
not return the same result), their corresponding join graph is the same. In
fact, as we will see in Section [3.1.3} the join graph is only one part of the
execution plan. Other operators in the plan process the output generated
by the XPath steps and joins in the graph, and generate the right result for
the given query.

Now that we have defined the notion of join graph, and explained in

details the type of vertices and edges it can contain, we next describe the
semantics of the join graph and the execution of its edges.
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root
Yma?l? xml © item O quantity O—

id |d

a A join graph consisting of 4 vertices. The content of the tables associated with
the vertices is shown.

text(

item quantity text()=1
2 4 5

b The fully joined relation resulting
from the execution of the edges in
the join graph.

Figure 3.4 A join graph and its fully joined relation resulting from the execution of its edges.

3.1.2 Semantics of the Join Graph and Execution of Edges

The semantics (“result”) of a join graph is a fully joined relation containing
attributes from the tables associated with its vertices. The relation is the
result of the subsequent executions of the edges (steps and joins) in the
join graph. Figure 3.4/ depicts an example join graph and the fully joined
relation resulting from the execution of its edges. We next describe the
execution of the edges, and the derivation of the fully joined relation.

Example 3.1.6. Figure[3.5a|illustrates the execution of the edge item//quantity
along with the result of the execution. The queried XML document is
“xmark.xml” with the XML tree shown in Figure The resulting join
graph after the execution of the edge is shown in Figure The executed
step is represented with a saw-shaped edge (). As can be seen in
the join graph, the table resulting from the execution of the operator is
vertically partitioned, and each partition is associated with its correspond-
ing vertex. Therefore, the content of the tables associated with the vertices
item and quantity is updated with the result of the execution of the edge
item//quantity . We stress that the partitioning of the result relation is
only logical, and is only performed for representational reasons. The two
partitioned tables are in fact positionally aligned in one single relation.
Figure shows the execution and the output result of the second edge
quantity/text () [.=1]. The left input to the step join is the table associ-
ated with the vertex quantity which, as a result of the previous execution
and as visible in the figure, is positionally aligned with the table associated
with the vertex item. Therefore, the result of the execution of the XPath
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Result
item quantity

a The execution of the edge
item//quantity and its output result.

root |0 item .,./,/, quantlty o text()

xmark.xm,
id

b The join graph after the execution of the edge item//quantity. The
saw-shaped edge represents the executed edge. The table resulting from the
execution is vertically partitioned, and each partition is associated to its
corresponding vertex. The partitioning is only logical, and performed only for
representational reasons.

Figure 3.5 The execution of the edge item//quantity of the join graph of Figure[3.4a]

step will also be reflected in the table associated with the vertex item, as
can be seen in the output relation. The join graph resulting from the step
execution is depicted in Figure The content of the tables associated
with the vertices item, quantity and text () =1 are updated with the result
of the execution. Note that the output relation depicted in Figure
matches the fully joined relation presented in Figure Also note that
the edge doc (xmark.xml)//item is not executed. In fact, there is no need
to process this edge since any item node in the document is certainly a
descendant of the document’s root. In case the edge was labeled with a
child axis, it would have been necessary to execute the step to filter out all
the item nodes that are not a direct child of the root node.

In summary, we have shown in the example that the execution of
an edge in a given join graph results in combining the tables associated
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Result

item quantity text()=1
2 4 5

/\

item quantity

a The execution of the edge quantity/text ()=1
and its output result. The left input to the step join is the
table associated with the vertex quantity, which is
positionally aligned with the item table. Therefore, the
result of the execution of the step will also be reflected in
the content of the item table.

/. // _ /
xml;?lg.);ml O—— item @ quantity @ +—1— te:th()
id id id -

b The join graph after the execution of the edge quantity/text ()=1. The
tables associated with the vertices item, quantity, and text ()=1 are
updated with the result of the execution.

Figure 3.6 The execution of the edge quantity/text ()=1 of the join graph of Fig-
ure[3.4al

with the vertices of the edge. The resulting relation is represented as
vertically partitioned tables, each associated to its corresponding vertex.
The partitioning is only logical, therefore any subsequent execution affects
the content of all the partitions. The result of the join graph is the fully
joined relation resulting from the execution of all its edges. We note that
subsequent projections, as described in the next section, specify which part
of the fully joined relation is of interest. We note that for optimization
purposes, these projections can be pushed into the join graph.

In the next section, we explain the method we adopt for finding the join
graphs of a given XQuery.

3.1.3 Join Graph Isolation

A join graph, input to the ROX algorithm, is an order-independent collec-
tion of XPath steps and relational join operators in a given XQuery. To
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Compile - Isolate Algebraic Plan with
- Algebraic Plan isolated Join Graphs

Figure 3.7 Process of finding the join graph corresponding to a given XQuery.

find the join graph of an XQuery, we use the existing technique named Join
Graph Isolation, explained in [59| 60]. This section gives a brief description

of the adopted technique.

The join graph isolation process is currently implemented in Pathfinder.
Pathfinder is a full-fledged compiler for the complete XQuery language,
targeting relational database back-ends. We use Pathfinder as a representat-
ive for XML database systems that support a relational algebra. Figure
depicts the process of finding the join graph corresponding to a given
XQuery. It consists of two stages; a plan compilation step followed by a

join graph isolation phase:

* Plan Compilation: In this phase, the input XQuery is compiled
into a DAG-shaped plan of algebraic relational operators. A peep-
hole driven optimization, described in [56|], rewrites the DAG into an
equivalent more efficient and simple form. This simplification process
uses compositional rewriting rules, the applicability of which is
decided based on the properties of operators in the plans. Therefore,
the application of the peep-hole-style equivalence rules is preceded by
a phase that traverses the DAG multiple times to infer the properties
of the operators. Given the XQuery Q; shown in Figure the plan
resulting from the compilation and peep-hole optimization of Q; in
Pathfinder is depicted in Figure (the reader is not expected to
fully understand the plan and the used operators). The semantics of
the operators used in the DAG are listed in Figure

¢ Join Graph Isolation: The join graph isolation step rewrites the DAG-
shaped plan generated by the previous compilation phase, such that
step and join operators are grouped together into one cluster. In
fact, as a result of the nesting of for loops, and of the conditional
expressions in an XQuery, joins, numbering and distinct operators
are usually scattered all over the DAG-shaped plan. The numerous
occurrences of numbering operators between the step joins restrict
the possibilities of join reordering, since the correct execution of the
step joins depends on the columns introduced by these numbering
operators. In the plan of Figure the step join >y /qge, the
most selective join in the plan, cannot be pushed below the other
two step joins, because of the presence of the attach operator #;,,.
The join graph isolation process takes care of pushing the blocking
operators higher in the plan, and of moving the joins down in the
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for $p in doc("xmark.

where $p/age
return $p

a XQuery Q1.
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b The DAG-shaped plan resulting from the
compilation and peep-hole optimization of Q1.
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¢ The DAG resulting from the join graph isolation step.

Figure 3.8 The process of finding the join graph corresponding to the XQuery Q1.

plan, such that a cluster, as large as possible, of selection, projection,
and join operators is created. The boundaries of those sections are
then detected and the clusters are replaced by corresponding Join
Graphs. Doing so seems easy, but in reality requires a finely tuned
set of optimization rules [59| 60]. The plan after join graph isolation
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Operator  Semantics
D<lp relational join with predicate p

Dstep XPath step executing the step step, returns
the new node in column pre

Tlayhy,...a,h, — PTOject onto columns b;, rename b; into 4;

#, attach unique row id in column a
1) duplicate removal
? serialize column 47 by order in ap
a1,z

Figure 3.9 Algebraic operators used by the Pathfinder system.

is shown in The operators within the boundaries of the oval
define the join graph of the XQuery. The remaining operators in the
plan form a tail to the join graph. Figure shows the execution
plan generated for query Qp including the corresponding join graph
(within the oval boundaries) and tail. The execution plan with the
embedded join graph is conveyed to the run-time environment of
ROX for optimization, effectively deferring to run-time any decisions
on the execution order of the joins and steps in the graph.

For most XQuery queries, a tail of operator is formed as a result of the
join graph isolation process. The tail usually consists of Project, Sort, and
Distinct operators. The functionality of the latter two is to ensure that
the order and distinctness semantics specified in the XQuery query are
preserved. The tail of the join graph shown in Figure contains a
Project operator, a Distinct operator, and a Serialize operator that performs
the required result sorting. It may seem suboptimal to strictly separate
the joins from these operators in the tail, however, it is possible, after
identifying the join graph and during its run-time optimization, to push
these operators, most crucially Distinct, between the joins.

Occasionally for certain queries, some operator constructs, such as aggrega-
tion computation and element construction, separating two or more groups
of steps and joins cannot be pushed by the join graph isolation process
below or above the clusters. This results in an execution plan containing
multiple isolated join graphs connected by the blocking operators. ROX
will then optimize each of the different join graph sub-plans separately.
Following is an example XQuery, the generated execution plan of which,
contains two separate join graphs.

Example 3.1.7. Consider the following XQuery Q:

for $a in doc("xmark.xml")//open_auction
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?i tem,item
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TCitem:personref id
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, O—— Pperson o—— profile 0——— age

root
xmark.xm

Figure 3.10 The generated execution plan of Q1 including the join graph (inside the circle)
and tail corresponding to the query. The join graph provides the optimizer with a description
of the step and join relationships in the input query without prescribing a particular execution
order of these operators.

where count($a//bidder) = 0 and
$a//reserve

return $a/@id

Its corresponding execution plan generated by the Pathfinder compiler
is shown in Figure The execution plan contains two join graphs
separated by Project, Count and Select operators. ROX will optimize each
join graph separately, starting with the bottom one.

We recall the last type of vertex presented in Definition a vertex
can correspond to “a pre-materialized table containing any type of XML
node, generated from a previous execution of a sequence of operators.”
The top join graph in Figure contains an example of such a vertex. The
vertex 7Ty, corresponds to the table of XML nodes that results from the
execution of the sub-plan of operators rooted at the project operator i,

3.1.4 Wrap-up
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In this section, we have introduced the join graph concept. We wrap up
our previous description by emphasizing the following points:

® An order-free representation of step and relational joins: The join
graphs embedded in the generated execution plans provide the op-
timizer with a description of the step and join relationships in the input
query without prescribing a particular execution order of these operat-
ors. This allows to effectively defer to run-time any decisions on the
execution order of the joins and steps in the plan.
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f

o

f

TCitem, i tem1:@id.pre

Ocount=1

T

CUUNTcount:item

f
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xmark.xml

Figure 3.11 The generated execution plan of query Q. It includes two join graphs
separated by Project, Count and Select operators. ROX will optimize each join graph
separately, starting with the bottom one and then optimizing the top graph the last.

* Support the entire XQuery language: The possibility to handle
multiple join graphs contained in one execution plan allows ROX to
support the entire XQuery language while focusing on the optimization
of the crucial order of relational joins and step operators. We also
stress that the fragment of the XQuery language that can be mapped
to an execution query with a single join graph is more expressive
than the twig queries widely considered in other previous work [26}
35,129, 33 [o5]-

e Seamless handling of step and relational joins: The fact that XPath
steps and relational joins co-exist together in the same join graph
gives ROX the possibility to optimize seamlessly the execution order of
these two different types of operators. Based on our knowledge this is
not supported by any previous work where the reordering of XPath
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steps is performed separately without taking into consideration the
relational joins in the query.

3.2 Sampling Techniques

Given an input join graph, the objective of the ROX algorithm is to find a
good execution order of the XPath steps and relational join operators in
the graph. Generally speaking, given a set of steps and relational joins,
an optimizer needs to acquire knowledge about the selectivity of each of
the operators to determine a good execution order for these operators.
Required to have no dependency on any a priori collected statistics and
cost model, ROX resorts to using sampling techniques to estimate the
selectivity of the operators in the join graph. For the usage of the sampling
techniques to be rewarding, sampling should be cheap, efficient, as well as
result in accurate estimations.

In this section, we start by describing the adopted sampling approach
and the technique for estimating the result size of joins. We then introduce
and explain our cutoff-sampling technique, the purpose of which is to
keep the cost of the sampling operations under control. We finally stress
some important points about the sampling techniques used in the ROX
prototype. We draw the attention of the reader to the fact that in the
following the term join and the symbol > are used to refer to both XPath
steps and relational joins.

3.2.1 The Sampling Operation

40

ROX uses sampling techniques in two situations. The first is when a table is
sampled to construct a set of tuples randomly chosen from the table. The
second is when a join is sampled to estimate the result size of an XPath step
or a relational join in the join graph. The sampling operation is denoted
with the symbol >. It takes as input, among others, an integer value LIMIT
that defines an upper bound on the number of tuples to be returned in the
sampling output. In the following, we describe in more detail the sampling
of tables and joins, and the technique used to estimate the result size of
joins.

Sampling From Tables

In some situations, ROX will need to sample a table to construct a set of
tuples randomly chosen from the given table. In this case, the sampling
operation takes as input the table T from which the tuples are selected, and
the integer value LIMIT. The sampling operation >rurr(T) will randomly
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pick from T a number of tuples equal to LIMIT. Next, we give a formal
definition of the sampling operation from tables.

Definition 3.2.1.

> : Table x N — Table
Srmrr(T) = S

S is a table containing tuples randomly selected
where  from T

|S| < LIMIT

The inequality |S| < LIMIT is introduced in the above definition to handle
the case in which the sampling operation cannot return a LIMIT number of
tuples. This can occur if the size of the table T is less than LIMIT.

Sampling Joins

ROX also samples joins to estimate the result size of XPath steps and
relational joins in the join graph. For the estimations to be accurate,
sampling should return a representative subset of the output of the sampled
operator. In other words, sampling the join R < T consists of generating
the set S = >rmrr(R > T), such that S is a representative subset of the
output of the join R > T.

Obviously, for efficiency reasons, the sampling result S should be
generated without first computing the full join. Therefore, to sample the
join operator, we need to execute the operator with a sample of its input,
meaning that the sample operation > is applied to the input of the join
instead of the output of the join itself.

A naive approach would apply the sample operation > to the two
inputs of the join; however, it is known from literature [2g] that a join
of two random samples chosen from the operands of the join does not
result in a representative sample of the output of the join, i.e. >r(R) <
>¢(T) does not generate a sample that is as representative as the sample
produced by the operation >purr(R > T).

Therefore, the sample operator > is usually applied to only one of the
join’s inputs, as depicted in Figure The figure illustrates two ways to
sample the join R < T: by evaluating one of the following two expressions:
(>rvrT(R) &< T) or (>Livrr(T) &< R). The first one refers to the execution
of the join using as input a sample chosen from the left input table R
(sampling method 1), while the latter corresponds to the case in which the
sample operation [> is applied to the right operand of the join (sampling
method 2).

Next, we give a definition of the sampling operation of a join.
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/ N\ sampling method 1
DLIMIT T
>LIMIT I|2
|
>
7\ o
R T / \ sampling method 2
DLIMIT R
|
T

Figure 3.12 Two ways to sample the join R >x T without fully executing the join first: the
sample operation > is applied to one of the join’s input tables.

Definition 3.2.2. Given the join R > T, sampling the join can be performed
using one of the following methods:

Sroar(R<T) = rmrr(R) < T sampling method 1

Sroar(R<tT) = rmr(T) <R sampling method 2

Obviously, as the result of a sampling operation depends on the tuples
in its sampled input, the above two sampling methods will most probably
produce two different result relations. The choice from which of the join’s
operands (R or T) to pick the sample can depend on several criteria. One
possibility is to choose the sample from the smallest input, since in general
picking a set of tuples from a smaller table results in a more representative
input sample, which yields to a more representative output of the join’s
result, and consequently to a more accurate estimation of the join’s result
size. Another factor takes into consideration the cost of the join sampling
operation, and tries to keep it as cheap as possible. For instance, if an index
is built on only one of the two operands, say T, then it might be better to
pick the sample from R, and use an index-based join to compute the join
between the sample set and T.

Estimating the Result Size of a Join

The relation generated by the sampling operation of a join is used to
estimate the result size of the join operator. In the following, we explain
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the method adopted by ROX to estimate the cardinality of a join. For that
purpose, we first make the following assumption and define the hit ratio of
a join.

Assumption 3.2.3. Given two relations T and ¢ where ¢ = >pvrr(T), we
assume that the tuples in t are a representative sample of the tuples in the
full table T.

Definition 3.2.4. We define the hit ratio of a join as the following function:

HR . Join — R*

st

Ry

where S=R;<XRyX...<xIRy,

HR(R{ <Ry <... I R,) =

It can be observed from the above definition that the hit ratio of a join
is defined with respect to its left operand. We therefore conclude that
HR(R>=1T) # HR(T < R).

We also note that given the join R > T, the size of its result S can be
inferred using the above formula if its hit ratio hr is known: |S| = |R| X hr.
Therefore, to estimate the result size of a join through sampling, we first
need to derive the join’s hit ratio.

Suppose that the join R > T is sampled using a sample from its left
operand, that is S = r 1 T where r = >rivrr(R). The hit ratio hr of the
sampled join is: hr = HR(r > T) = % Using Assumption [3.2.3, the hit
ratio of the full join R &< T can be linearly extrapolated from the hit ratio
of the sampled join, and therefore we have HR(R >x T) = hr.

Now that we have described the derivation of the hit ratio of a join through
sampling, we define the cardinality estimation of the join’s result. The
following definition will be refined in Section after introducing the
cutoff-sampling technique.

Definition 3.2.5. Given the join R > T, and supposing that the join is
sampled using the expression >rur7(R) < T (i.e. sampling method 1), the
estimated cardinality of its result is computed as follows:

card : Join — R*
cardR<T) = |R| x hr

hr=HR(r>=T)
where
r = >rvr(R)

The above definition estimates the result size of the join R < T while
sampling the join using the sampling method 1. Obviously, it is also

43



3. Foundations and Formalization

44

/N
> R
/ N\
: R
i
/ N\
D>LIMIT Ry

Ry

n

n—1

Figure 3.13 Sampling the sequence of joins R1 > Ry 4 ... DI Ry,. A set of tuples
is randomly chosen from the relation R and then joined with the other (n — 1) tables.
Obviously, as explained earlier, the sample set can also be picked from any of the (n — 1)
input relations Ry, R3, ..., or Ry,.

possible to estimate the cardinality of the join with the sampling method 2,
i.e. picking the input sample from the relation T (>r1urr(T) < R). In that
situation, the result size is computed as follows: card(R > T) = |T| X hr
where hr = HR(DLIMIT(T) > R).

Example 3.2.6. Suppose that the size of the join R > T is estimated using
the sampling operation S = r b1 T where r = >1990(R). Let |[R| = 5000
and |S| = 400. Using the formula in Definition the hit ratio of the
sampled join r > T is estimated to be equal to % = 4. Using linear
extrapolation (Assumption [3.2.3), we infer that HR(R < T) = 4. The result

size of the join is then estimated to be card(R > T) = 5000 x 4 = 20000.

Sampling a Sequence of Joins

To sample a sequence of joins, ROX adopts the same approach used to
sample a single join. Figure depicts the sampling operation of the
sequence R; > Ry b ... > Ry, As in the case of sampling a single join,
a sample set chosen from one of the input tables is joined with the other
(n — 1) tables. In the plan illustrated in the figure, the sample is picked
from the relation R, but as we have explained earlier, the sample set may
as well be chosen from any of the other (n — 1) input tables Ry, R3, ..., or
Ry.

Definition can be generalized to a tree of join operators, and then
used to estimate the result size of a sequence of joins. The hit ratio hr of
the sampled join sequence S = >rmrr(R1) b Ry ... > Ry, is equal to
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I‘rill\ where 71 = >rmrr(R1). The hit ratio hr is linearly extrapolated to the
full join Ry > Ry > ... < Ry, and the estimated cardinality of the result
of the join sequence is then computed as follows card(Ry > Ry 1 ... <

Ry) = |Rq| X hr.

3.2.2 Cutoff-sampling

In the previous section, we stressed that sampling a join consists of joining
a sample randomly chosen from one of the join’s operands with the full
table of the other operand. Although the size of the input sample is usually
small, the result of the join sampling operation might be large in case the
join hit ratio is high. In fact, the worst case complexity of join operators
is quadratic: they can in principle return the Cartesian product of their
two inputs. Though this certainly is not typically the case, our run-time
optimizer should guarantee efficiency against the possible occurrence of
high join hit ratios which blow up the size of the result of a sampling
operation. To achieve this, ROX uses cutoff-sampling which ensures that the
size of the output of a sampling operation does not exceed a pre-defined
number of tuples.

Cutoff-sampling, denoted by >, takes as input a join operator i<, the
two tables R, T to be joined, and an integer value LIMIT. The operation
>rivrt(R > T) executes the join (R < T), and returns from the execution
result a number of tuples equal to at most LIMIT. Cutoff-sampling does
this in one step: rather than producing the full result of (R > T) and then
reducing it to LIMIT, cutoff-sampling is integrated into the operator. That
is the execution of (R > T) is terminated when the number of output
tuples reaches the LIMIT value, thus cutting-off early the generation of
results.

By processing only a fraction of the tuples in its input sample and limiting
the generation of results, the introduced cutoff-sampling technique suc-
ceeds in keeping the cost of sampling under control and the result size
of these operations within usable range; however, it might suffer from
generating less representative result sets. We will further explain this point
in Section [5.2|and present possible solutions.

Example 3.2.7. Suppose that the join R > T is sampled with the operation
>100(r >t T), where r is a sample randomly chosen from R (r = >109(R)
and |r| = 100). Cutoff-sampling will partially execute the join r > T until
the size of the output reaches 100. Therefore, only a fraction of tuples in r
necessary to produce the required 100 tuples is consumed. If we suppose
that the join hit ratio is equal to 5, and that it is uniform across the tuples
in r, then the total number of tuples consumed from r is around 20, which
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means that only a fraction of 0.2 of the r tuples will be processed during
the sampling operation.

We observe from the previous example, that to sample the join R>x T
the following two steps should be applied:
1. The input relation R is first sampled to construct the sample r with
size sample-size: 7 = D>sample-size (R)
2. The sample r is joined with the other input relation T using cutoff-
sampling and the cutoff LIMIT: D>y qupr(r < T)
In the previous example, we had sample-size = LIMIT = 100. Obviously, it
is also possible to sample the join R < T by picking a sample from the table
T, and cutoff-sampling the join as follows >rurT(>sample-size(T) > R).
As explained in Section the choice from which table to pick the
sample depends on several criteria.

Although cutoff-sampling is explained in the context of joins, we note
that the introduced technique might as well be used with other operators.
Generally speaking, cutoff-sampling an operator op with cutoff value
LIMIT consists of partially executing op until the size of the generated
result reaches LIMIT.

Estimating the Result Size of a Join

We know from Definition that to estimate the result size of the
join R > T in the previous example, the hit ratio of its sampled join
r > T should be first derived. However, the cutoff-sampling operation
D>100(r > T) partially executed the join r 1 T, and generated the output
table S, while processing a fraction of only 0.2 of the tuples in r. Since 80%
of the r tuples has not been evaluated, it is not possible to use the size of
the output S (which is equal to the pre-defined limit 100) to estimate the
hit ratio of the sampled join r > T as described in Definition

As a result, the estimation of the hit ratio of the join r > T is integrated
into the cutoff-sampling operation, i.e. cutoff-sampling will compute and
subsequently return the hit ratio of its input join. To derive the hit ratio
of r > T, cutoff-sampling takes note of the number n of processed tuples

in r, and then uses it to compute an estimate of the hit ratio hr as hr = %‘
Let A be the set of n processed tuples from r. Assuming that A is a
representative sample of the tuples in r (Assumption 3.2.3), it is possible to
linearly extrapolate the join hit ratio hr to the cutoff-sampled join » > T.
Then assuming that the set r is a representative sample of the tuples in R
(Assumption [3.2.3), it is possible to linearly extrapolate the join hit ratio hr
to the full join R < T.

Two linear extrapolations have been applied here. The first one goes
from the sample A to the set r, while the second applies from r to R. We
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note that the method used by cutoff-sampling to pick the tuples to be in
A and the sampling technique used to construct the sample ¥ might very
well be different. We also stress that because of the two consecutive linear
extrapolations, and depending on the method used to choose the tuples in
A, cutoff-sampling might generate less representative result sets. We will
further explain this point in Section [5.2|and present possible solutions.

We now formally define the cutoff-sampling operator .

Definition 3.2.8.

> . Join x N — Table x R*

Drar(r<T) = {Shr}
S is the result of the cutoff execution of the
operator (r>1T)
where { S = >rrr(r > T) A |S| < LIMIT
hr = HR(ra T) = L
n is the number of processed tuples from r

The inequality |S| < LIMIT is introduced in the above definition to handle
the case in which the cutoff-sampling operation cannot return a LIMIT
number of tuples. This can occur if the total number of tuples that originally
match the join operation 7 > T is less than LIMIT.

To make it more suitable to the introduced cutoff-sampling technique, we
now refine Definition which formulates the process of estimating the
result size of a join.

Definition 3.2.9. Given the join R > T, and assuming that the join is
cutoff-sampled using the expression >piuT(>sample-size(R) > T), the
cardinality of its result is estimated using the following formula:

card(R< T) =|R| x hr

where (S, hr) = L (r =< T)
7 = Dsample-size (R>

We stress again that it is also possible to estimate the result size of the
join R < T by picking a sample from the table T, and cutoff-sampling the
jOiI‘l as follows ELIMIT(Dsa.mple—size(T) > R).

Continuation of Example In Example we sampled the join
R < T using the operation (S,hr) = >q1g9(r > T), where r is a sample

randomly chosen from R (r = >190(R) and |r| = 100). We know that

47



3. Foundations and Formalization

48

> vt (™)

/7 N\
> vt () Ry
JZRN
: Ry-1

|
Dromrr(>)
/N

Dsample-size R2

Ry

Figure 3.14 Cutoff-sampling the sequence of joins Ry < Ry X ... X R;;. A set of
tuples is randomly chosen from the relation Ry and then joined with the other (1 — 1) tables
Ry, R3, ..., Ry. The joins are executed with the cutoff LIMIT. Obviously, as explained
earlier, the sample set can also be chosen from any of the other (n — 1) input relations Ry,
Rs,...,0orRy.

|S| = 100 and that only 20 of the r tuples have been processed. Cutoff-
sampling exploits the number 1 of processed tuples to estimate the hit ratio
(hr) of the join r > T, by computing the formula shown in Definition [3.2.8}
hr = 20 = 5. Let |R| = 3000, ROX can now compute the cardinality of the
full join R > T as shown in Definition card(R > T) = 3000 x 5 =
15000.

Cutoff-sampling for a Sequence of Joins

When sampling a sequence of joins, ROX also uses cutoff-sampling to limit
the sampling cost. Figure illustrates the cutoff-sampling of the join
sequence Rj <1 Ry >4 ... >4 Ry,. A set of tuples is chosen from the relation
R; and then joined with the other (n — 1) input tables Ry, R, ... and R,.
The (n — 1) joins are cutoff-sampled with the operations shown below:

(Sp,hry) «— DriviT(>sample-size (R1) > Rp)
(S3,hry) « Brivit(S2 > R3)

(Sp—1,hrn—2) < Brrt(Sp—2 AR, 1)
(Sn/hrn—l) — ELIMIT(Sn—l >J Rn)

As we have mentioned earlier, the sample set can as well be chosen from
any of the other (n — 1) input relations Ry, R3, ..., or Ry,.

To estimate the result size of the join sequence (R; < Ry &4 ... > Ry),
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we first need to derive the join hit ratio of the sequence. We claim the
following:

Lemma 3.2.10. Suppose the join sequence Ry >4 Ry > ... X Ry is cutoff-
sampled by executing the following operations:
(SZ/hrl) — lZI.IMIT(Dsm,mpLe-size(Rl) > RZ)
(S3,hr2) < B ryrr(Sa >4 R3)

(Sp—1,hrp—2) — S romrr(Sp—2 X R, 1)
(Sp,hry—1) < S romrr(Sy—1 > Ry)

n—1
We claim that HR(Ry <1 Ry >4 ... < Ryy) =~ | [ (hry)
i=1

In the following, we prove the above lemma. The proof is given with
n = 3, and can be generalized to all values of n (n € IN™T).

Proof. Given the join sequence R >1 T > Q, it is cutoff-sampled by execut-
ing the following two operations:

(S1,hr1)  — Drmur(re<T) (3.1)

(Sp,hry)  — Prmrr(S1>=<Q) (3-2)
Let

r - \>sample—size (R) (33)

S = T (3-4)

From the above, we can infer the following:

HR(r><1T) = hry by and Definition 3.2.]
= card(r<T) = |r| x hry by Definition [5.2.4] (3.5)
S1=Drmrr(r=T) by and Definition [3:2.8]
= >rmrr(S5) by (3.4 (3.6)
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HR(S1 =1 Q) =hry by and Definition [3.2.]
= HR(S~ Q) ~ hry by and Assumption [3.2.3]
= |SxQ)| =|S| X hryp by Definition [3.2.4]
= |rx T Q| = |r>T| x hry by (3-4)
~card(r<i T) x hry by card(r<tT) =~ |ri< T|
= |r| x hry X hry by (3.5)
= HR(r<xTxQ) = hry X hry by Definition [3.2.4]
= HR(R>1T <1 Q) ~ hry X hry by (3.3) and Assumption [3.2.3]
O

We have proven that the hit ratio of the join sequence R 1 T 1 Q
can be estimated to be the product of the hit ratios of the individual
cutoff-sampled joins. The proof is generalizable to a sequence of # joins.

We now give a formal definition of the cutoff-sampling operation and the
result size estimation technique of a sequence of joins.

Definition 3.2.11.

> . Join x N — Table x R™
[ZLIMIT(rl > R2 o X Rn) = (Sn, hT)

—_

ne
hr = HR(r1 >Ry ... < Ry) = [ [ (hry)

i=1
(Sp,hry) — Brivrr(r1 A Rp)

where { (S3,hr2) — >rivir(S2 > R3)

(Sp—1,hrp—2) < >rvrr(Sy—2 XA R, 1)
(Sp, hry—1) < Lt (Sp—1 > Ry)

Definition 3.2.12. Given the join sequence R; > Ry >4 ... > Ry, and
assuming that it is cutoff-sampled by picking a sample from the input
relation Ry, the cardinality of its result is estimated using the following
formula:

Card(Rl > RZ >X...X Rl’l) :|R1| X h?’
where {(S, hr) = Brmrr(r1 Ry 1. .. I Ry)

rn = \>sa.mp1e—size (Rl)
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Cutoff-sampling Join Hit Ratio
>100(>100(R) > T) = (51, 5) hr(>100(R) > T) = 5\
——
>100(S1 > Q) = (52,2) hr(S1 > Q) = 2\
"R

hr(Re<x T Q) =1I1(hr) =2 x5=10

—
Estimated Cardinality card(R><1 T <1 Q) = |R| x 10 = 30000

Figure 3.15 The estimation process of the result size of the join sequence R >x1 T 1 Q
by computing the hit ratio of the join sequence. The hit ratio of the join sequence is the
product of the hit ratio of each of the individually cutoff-sampled join.

As noted before, it is also possible to estimate the result size of the join
sequence Rj 1 Ry < ... > R, by picking a sample from any of the other
(n — 1) input tables Ry, R3, ..., or Ry,.

Example 3.2.13. We suppose that the join sequence R < T < Q is cutoff-
sampled by executing the two operations (S1,5) < >rmrr(r > T) and
(82,2) — IZLIMIT(Sl D> Q) where v = Dsample-size(R) . Let |R| = 3000,
sample-size = 100, and LIMIT = 100. Therefore, the two cutoff-sampled
joins take as input a sample set of size 100 and limit their output to 100
tuples. The hit ratio of the first cutoff-sampled join is 5, and the hit
ratio of the second cutoff-sampled join is 2. Therefore, the hit ratio hr
of the join sequence r > T 1 Q is equal to 5 X 2 = 10. Assuming r is a
representative sample of the table R (Assumption [3.2.3), the hit ratio hr can
be extrapolated to the join sequence R 1 T > Q. Therefore, the result size
of the join R T > Q is equal to |R| x 10 = 30000. Figure [3.15|illustrates
the estimation method. The arrows linking elements in the table represent
the definition-use chain of some of the values and relations produced
during the cutoff-sampling and result size estimation process.

3.2.3 Notes on Sampling in the ROX Prototype
In this section, we describe some important points concerning the sampling

techniques adopted in the ROX prototype.

Sampling from indexes: To build a sample of the tuples associated with
a given vertex in a join graph, ROX samples from indexes built on base
tables and from generated intermediate tables. In fact, in ROX we prefer to
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sample indexes instead of base tables since it is more efficient. We therefore
assume the existence of indexes on XML elements and values. We stress
that the availability of element and value indexes is not a requirement for
ROX, tuples may as well be sampled from base tables if the appropriate
index does not exist. Efficient and reliable sampling from indexes, using
techniques like partial sum trees is well-known [100]. An index on relation

R
R is represented by the symbol 1/. Similar to sampling from a table, an

element index is sampled with the expression: >r1urr(5/). Due to its more
complex structure, a value index is not sampled but cutoff-sampled with

R
the expression > vrr(%7). With some extra engineering effort, the normal
sampling technique could be used. While sampling from an index, we can
also estimate the number of nodes associated with a given vertex in a join
graph. We denote the cardinality estimation process from an index with

R
the symbol EstCard(</).

Sampling joins: To ensure efficiency when sampling a join, it is better to
use physical join operators that satisfy the zero-investment property with
respect to their sampled input. A zero-investment operator is defined to
be an operator, the complexity of which only depends on the cardinality
of its sampled input. That is the operation OP(r, T) between the sampled
input r and the relation T complies to the zero-investment property if its
cost is linear in the size of the sample r. This rules out any algorithm that,
prior to producing results, makes an investment that is linear (or worse)
with respect to any input relation other than the sampled one. Equi-join
algorithms that satisfy the zero-investment property are nested-loop index
lookup, merge join (only applicable if the inner input is ordered), and hash-
join (only applicable if a hash table is already built on the inner relation).
The zero-investment condition is a generalization of the “index-available"
condition [114] that is long known to simplify the issue of efficiently
obtaining reliable join samples.

Sampling of relational joins in a database system has been the subject of
research, and several sampling approaches have been suggested already [29]
64}, [100]. One sampling methodology, proposed in index based join selectivity
estimation [114], takes a random sample of input tuples from the outer
operand, and looks-up efficiently, using an index, all matching tuples in
the inner operand. This sampling technique complies to the introduced
zero-investment property, and typically applies in our join graph when
there is an equality edge touching two attribute- or two text-nodes. In that
case the XML value indexes are used.

We note that the XPath step joins used in the ROX prototype also
conform to the zero-investment property with regards to their sampled
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input. In fact, we observed that our join graphs can be fully sampled in
ROX with zero-investment operators. The implementation of the sampling
operation of XPath steps and relational joins will be explained in greater
detail in Section [5.2l when describing the ROX prototype implementation.

Representativeness of samples (Assumption [3.2.3): The cardinality es-
timation techniques we have described in this section are all built upon
Assumption It is known from literature that the representativeness
of a sample affects the accuracy of the estimated result size. We will see in
the conducted experiments in Chapter [5|and Chapter[6]to which extent this
assumption holds, and the consequences on the quality of the decisions
made by the optimizer when it does not.

3.3 Notation

This section presents some notations that will be used in the subsequent
chapters of this thesis. The definitions are grouped into four sections; the
first corresponds to a summary of the possible edges in any given join
graph, the second enumerates some notations corresponding to vertices in
the join graph, the third presents notations for edges, and the fourth lists
some notations for operators.

We first start by defining the notations to be used in the following sections:

Edge = Vertex x Vertex

Path = Edge | (Edge x Path)

Table = list of XML nodes and/or values
Join = arelational join or XPath step

We note that some of the functions defined in the following sections are
total and some are partial.

3.3.1 Notations for Join Graph
Figure shows a table summarizing the different possible edges, and
their semantics, in any given join graph.

3.3.2 Notations for Vertices

In this section, we introduce some notations and terms corresponding to
vertices in a join graph.
Given a join graph G = (V,E) and a vertex v € V, we define the following:

TBL : Vertex — Table
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Notation Semantic
V1 04X vy | the XPath step vi/ax: :vy
pred . .
V1 vy | the relational join vy B<eq v2
vi —— V2 | an arbitrary join between between v; and vy, abstracting
from a particular XPath step or relational join.
v1 @2+ vy | the executed XPath step vq/ax: :vp
pred . -
vy —— v2 | the executed relational join vy b v2
v —— V2 | anarbitrary executed join between v; and vy, abstracting
from a particular XPath step or relational join.

Figure 3.16 The different possible edges in a join graph.

TBL(v)

SMPL
SMPL(v)

card
card(v)

edges
edges(v)

edges™
edges™ (v)
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is the full table associated with v. It consists of a
relation containing all the XML nodes corresponding
to the vertex v

Vertex — Table

is the sample table associated with v. It consists of
a relation containing a random sample of the XML
nodes corresponding to the vertex v

Vertex — IN
is the cardinality of the vertex v. It represents an
estimation of the number of XML nodes

corresponding to v

Vertex — P (Edge)
is a set containing all the outgoing edges of v

Vertex — P(Edge)
is a set containing all the outgoing executed edges
of v
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edges™
edges™ (v)

graph™
graph™ (v)

graph™
graph™ (v)

edges”
edges™ (v)

paths™
paths™ (v)

Vertex — P (Edge)
is a set containing all the outgoing unexecuted edges
of v

Vertex — Graph
is a rooted graph consisting of the join graph G
rooted at vertex v and containing only the chains of

executed edges

Vertex — Graph

is a rooted graph consisting of the join graph G
rooted at vertex v and containing only the chains of
unexecuted edges

Vertex — P (Edge)
is a set containing all the edges in the rooted graph

graph™ (v)

Vertex — P (Path)

is a set containing all the possible paths in the rooted
graph graph™ (v) starting from the root v and ending
at a leaf in the graph. In the case of a cyclic graph,
each path cannot contain the same edge more than

once.

Definition 3.3.1. Given a join graph G = (V,E), a vertex v € V is said to
be an executed vertex if and only if |edges™ (v)| > 0.

We now illustrate some of the above definitions using the join graph

= {(U, {11), (U, bl)/ (U, Cl)/ (U, dl)}
= {(U/bl)/(vldl)}

depicted in Figure
edges(v)
edges™ (v)
edges™ (v)

- {(v,al), (U,Cl)}
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ap ay v —+1 d; dy —+1 d3
by v+ — by 1 C3 — 11 C4
b3 €2

a The join graph used to illustrate some of the defined notations
corresponding to vertices.

by d 1 a1
by bs a0 c3
b The rooted graph graph™ (v) ¢ The rooted graph graph™ (v) with
with the encircled root v. The graph the encircled root v. The graph
consists of all the chains of executed consists of all the chains of
edges contained in the join graph in unexecuted edges contained in the
Figure[317a join graph in Figure 3772

Figure 3.17 The join graph used to illustrate some of the defined notations corresponding
to vertices. The two rooted graphs graph™ (v) graph™ (v) are also depicted.

(v) = Shown in Figure

graph™ (v) = Shown in Figure
( ) - {(v/bl)/ (blrbZ)r (bl/b3)/ (U,dl)}
(0)

= {{ea), m)} (@), o)
{(v,c1), (er,ca)}

3.3.3 Notations for Edges

In the following, we introduce some notations corresponding to edges in a
join graph.
Given a join graph G = (V,E) and an edge e = (v1,v2) € E, we define the
following:

op : Edge x Table x Table — Join
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op(e,T1,T7) is the join operator associated to the edge e taking

as input the tables T7 and T»

w : Edge —IN
w(e)  is the weight of the edge e which represents the

estimated cardinality of the join operator
op(e, TBL(v1), TBL(v7))

exec : Edge — Table

exec(e) represents the execution of the join operator
op(e, TBL(v1), TBL(v7)). It returns a table

containing the output result of the execution.

exec : Edge x Table x Table — Table

exec(e, T1,T7) represents the execution of the join operator

op(e,T1,T7). It returns a table containing the

output result of the execution.

3.3.4 Notations for Operators

We define the following operators:

>
>romrr(T)
>
Dromrt(r1 Ry .. .)
R
> rmrr(S/)
Delt
\V4
Delr
v (9)

(Table U Index) x N — Table
Samples a set of tuples of size LIMIT
from the table or index T

Operator x N — Table x R™
Cutoff-sample the input join(s)

Cutoff-sample the input index

String — Table

returns the list of all element

nodes in document D with gname g
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Drext
\V4 : R — Table
Drext
v (0) returns the list of all candidate text
nodes in document D with value v
EstCard . Index — NT
Dy
EstCard(s/(y)) returns an estimation of the size of the list

Dy
generated by the specified index lookup v/ (v)

3.4 Conclusion

In this chapter, we have introduced the foundations on which ROX is
built. We first described the join graph structure which is the input to
the ROX algorithm. The join graph is an order-free representation of the
XPath steps and relational joins in an XQuery, providing ROX with the
opportunity to seamlessly order the two different types of operators. ROX
can also optimize several join graphs embedded in a single plan allowing
it to handle the full XQuery language.

We have also described the sampling technique used by ROX to sample
joins and the method employed to estimate the result size of the joins. We
have introduced the cutoff-sampling operation which guarantees that the
cost of sampling is kept under control.

Last but not least, some notations which will be used in the subsequent
chapters were presented.
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Traditional relational database systems are currently the most used cor-
porate database systems in companies and organizations. As we have
stressed in Chapter [1] of this thesis, the optimizers of these systems fail, is
some situations, to deliver the expected optimization quality due to several
existing challenges. The reasons behind these challenges originate mostly
from the design of the optimizer. In the context of XQuery, these chal-
lenges and their impact are aggravated. As a solution, we propose a new
XQuery optimizer which adopts a design different than the one existing in
traditional optimizers, allowing it to overcome the current challenges.

We opt for an optimizer that postpones the optimization of crucial
sections of the query plan to run-time. These sections consist of join
operators (XPath steps and relational joins), the most expensive but heavily
used operators in database systems. Contrary to traditional relational
optimizers, the new run-time XQuery optimizer is autonomous: it does
not depend on any a priori collected statistics and cost model, and uses
sampling techniques to learn about the characteristics of the queried data
and the correlations among them. The choices we have made stem from
our belief that for an optimizer to be good and robust, it has to be adaptive,
basing its decisions on up-to-date observations about the content of the
database, the characteristics of the queried data, as well as the availability
of computing resources.

This chapter describes ROX, our Run-time Optimizer for XQueries.
In this chapter, ROX is explained in the context of database systems
optimized to fully materialize their intermediate results. We first give a
general description of ROX and follow it up with a detailed presentation
of the algorithm. We then explain in detail the chain sampling process,
and stress the differences between the theoretical and implemented chain
sampling variants. We end this chapter with an example that illustrates the
ability of ROX to detect and exploit the existing correlation in the queried
data.
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. // . , // )

item @ "> quantity item <@———1 quantity
a An edge corresponding to the XPath step b An edge corresponding to the XPath step
item//quantity. The corresponding item//quantity. The edge is processed
operator is executed with item as context node with quantity as context node and with an
and a descendant axis (//). ancestor axis. Therefore, the corresponding

operator is executed as
quantity/ancestor::item.

Figure 4.1 An edge corresponding to the XPath step item//quantity. The edge can
be executed with either a forward or a backward axis.

4.1 Introducing ROX

Before we give a general description of ROX, we briefly restate the optim-
ization problem that ROX aims to solve.

4.1.1 Problem Statement

60

ROX focuses on optimizing at run-time the execution order of XPath steps
and relational joins in an XQuery query. As we have seen in Section
the to-be-ordered operators are passed to ROX in a join graph structure
as part of the complete execution plan. Given a join graph G, the ROX
algorithm will assign an ordering to the edges in the graph, defining the
execution order of the corresponding join operators.

ROX not only designates an order to the edges, but also an execution
direction. The execution direction of an edge, indicated with an arrow,
specifies the left and right operands of the execution of the join operator
corresponding to the edge. For instance, the edge (a—> b) is executed
using the tables associated with the vertices a and b as respectively the
left and right input operands (TBL(a) <t TBL(b)). If the edge corresponds
to an XPath step, the execution direction not only marks the vertex used
as context node in the execution, but also defines the type of XPath axis
to be used. An example of an XPath step execution is illustrated in
Figure[s.1] The step can be executed in two ways: either with a forward axis
(item//quantity) or with a backward axis (quantity/ancestor: :item).
We note that in XML query processing, depending on the document
structure, there may be significant differences in executing an XPath step
with e.g. a child or parent axis.

Therefore, given a join graph, ROX needs to determine robustly and
efficiently the execution order and direction of the edges in the graph, such
that the generated plan is (near-)optimal.
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ROX
Join Optimization _—  Execution ,
Graph phase using phase using Results
sample data ~~—"  full data

Figure 4.2 An illustration of the steps of ROX: optimization and execution steps are
alternated until all operators in the join graph are executed. Every optimization consists of
sampling path segments in the join graph until a "superior” path is found. The execution
phase executes the join operators in the chosen path and materializes the results. Therefore,
ROX defines the execution plan step-by-step, with each optimization phase shaping one
section of the plan, and each execution phase directly evaluating the operators in the newly
defined section. When all operators in the graph are executed, ROX returns a relation
containing all the tuples satisfying the join operations in the graph.

4.1.2 General Description of ROX

In ROX, the join ordering problem boils down to analyzing the join graph
in search of a (near-)optimal join order from the entire search space of
possible execution orders. To accomplish this, ROX adopts a strategy of
interleaving optimization and execution steps. We stress again that this
chapter describes ROX in the context of database systems optimized to
fully materialize their intermediate results.

Every optimization phase explores the search space looking for a ”su-
perior” path segment (sequence of join operators). The search is performed
by the Chain Sampling process which samples efficiently and iteratively
different path segments in the join graph. As soon as a path segment is
found to be superior to others, the sampling stops. The execution phase
then executes the associated XPath steps and relational join operators in
the chosen path segment, and materializes the results. Then a new op-
timization phase initiates the search for the next superior path segment,
benefiting from the newly materialized intermediates which are analyzed
to obtain up-to-date, more accurate information about the joins in the
graph. ROX stops the intertwining of optimization and execution steps
when all operators in the join graph are executed. Figure 4.2 presents an
illustration of the steps of ROX. Every iteration consists of an optimization
phase which is based on join sampling operations, and an execution phase
which executes these joins using full tables. Therefore, the execution plan is
defined in an iterative manner as the ROX algorithm proceeds. Every path
segment chosen during an optimization phase determines one section of
the plan which is then executed directly during the subsequent execution
step.
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We note that it is the alternation of optimization and execution steps that
gives ROX part of its robustness. Since every execution phase is followed
by a full materialization of the generated intermediate result, it opens the
opportunity for the next optimization step to use the new data to update
its knowledge about the selectivities of the joins in the graph. This, as a
result, allows the detection of existing data correlations among the joined
vertices in the graph. Next, we enumerate some of the characteristics of
ROX, then we give a more detailed description of the optimization phase
in ROX.

Characteristics of ROX

We stress the following important aspects of ROX:

1. ROX is an autonomous, robust and efficient optimizer. It is the
first run-time optimizer for XQueries and one of the very few tech-
niques in the relational context that completely interleaves query
optimization with query execution.

2. ROX improves the state-of-the art in XQuery optimizers both in plan
quality as well as running time.

3. ROX does not depend on any a priori collected statistics and a pre-
built cost model, and therefore it does not suffer from the deficiencies
of the current state-of-the-art in cost estimation.

4. The chain sampling technique implemented in ROX provides the
first generic and robust method to detect any type of correlated data.

5. ROX is the first optimizer which can seamlessly optimize the execu-
tion order and direction of both relational joins and XPath steps.

6. The ROX approach is generic enough to be exported to other query
languages, like SQL and SPARQL.*

7. ROXis not “query-specific”: unlike traditional optimizers, the qual-
ity of the optimization decisions in ROX does not degrade when
handling unexpected query loads.

Optimization in ROX

In ROX, the execution plan is generated step-by-step: every optimization
phase shapes one section of the plan by determining the best sequence of
operators to be executed. To produce cheap execution plans, a strategy
followed by most database systems is to reduce as much as possible the
number of tuples generated and flowing through the operators in the plan.
This basically translates into first executing the operators that keep the
output small. Using sampling techniques, ROX can estimate the weight

'http://www.w3.org/TR/rdf-sparql-query/
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(i.e. result size) of each edge in the join graph and then pick out the one
with the smallest output cardinality for evaluation. However, we realize
that executing the operator corresponding to the spotted edge directly is a
greedy decision, and can lead to an execution plan that is far from optimal.

Determining the edge with the smallest weight is in fact equivalent to
finding a local minimum in the search space of the join graph. However,
there might exist a sequence of edges in the graph which forms a global
minimum, and thus generates a smaller number of intermediary tuples. To
detect the existence of such paths (sequences of joins), the optimization
phases of ROX adopt a chain sampling technique which uses the local
minimum as starting point and then invests a small amount of time to
climb the hill searching for a global minimum.

Before we explain the chain sampling technique in more detail, we give
the following two definitions:

Definition 4.1.1. Superiority of a path: Given a set S of paths, a path p is
said to be superior to all other paths in S if the execution of p followed by
the execution of any path p’ € S is cheaper than executing first p’ and then

p.

Definition 4.1.2. Absolute superiority of a path: Given a set S of paths, a
path p is said to be absolutely superior to all other paths in S if the execution
of p followed by the execution of any path p’ € S is cheaper than executing
p’ alone.

We note that absolute superiority implies superiority, that is a path p
that is absolutely superior to all other paths in S is also superior to all
paths in S.

We also stress that the set S does not include all possible paths in the
search space of the join graph. Moreover, the comparisons between pairs
of paths can be implemented efficiently such that little time is spent on the
checking for the superiority and absolute superiority of a path.

Given the edge e with the smallest weight, chain sampling is a process exploring
the path segments (sequences of joins) around e, in search for a path segment
that is superior to all the explored paths in the join graph including the edge e.
When such a path is found, the path is returned for execution. The starting
point of the exploration process is the edge e: given a sample chosen from
one of the vertices v of e, chain sampling samples iteratively in a breadth-
first manner the sequences of unexecuted edges branching from v, until
detecting the path p. During every sampling iteration, new path segments
are defined by extending previously explored paths with an additional
newly sampled edge. The selectivity of an explored path segment is
estimated by consecutively sampling the edges along the path, using the
output of the sampling operation of one operator as input to the sampling
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a Join graph in which we suppose (07, Us) to be
the edge with the smallest weight. We choose
the vertex v; to be the starting point of the chain
sampling exploration.

P P2, P4 P4
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¢ The second iteration of chain sampling. Path
P1 has no unexecuted edge to sample. A new
path p4 is created by extending path p; with the
newly sampled edge (v3, v4). Two unexecuted
edges are branching from ps3, therefore two new
paths p5 and pg are created, each one extending
p3 with one of the branching edges.

Figure 4.3

P1 P2
01 (%] U3 ()
»\
Us Vg —+1 Ug
07 Ug

b The first iteration of chain sampling. The
starting sample chosen from v; is used as input
to sample all the outgoing unexecuted edges of
0. This defines three path segments in the join
graph.

41 P2, P4 P4
(%) %

01 3 U4

P3:P5,]ﬂ6,]ﬂ7\
Ps

U5 ——> U — 11 U9

P6,P7\
p7

U7 —— Ug

d The third iteration of chain sampling. Only one
new path py is created by extending pe with the
sampled edge (v7,vg). Note that ps is not
extended since it is connected to an edge that
has already been executed in a previous
execution phase of ROX.

lllustration of chain sampling. The starting point of exploration is the edge

with the smallest weight which we suppose to be (02,05). A sample table chosen from
the vertex U7 is used to sample the surrounding path segments of unexecuted edges. The
sampling is performed iteratively in a breadth-first manner. The labels on the edges denote
the path id(s) to which the edges belong, and the arrows indicate the sampling direction (i.e.
the left and right operands of the sampling operation).

operation of the subsequent operator. By sampling ahead in the branches,
ROX may discover that a path, due to correlations, produces a result of
much lower cardinality than the initially predicted estimations, and hence
proving to be superior to others. We illustrate the chain sampling process
with the following example.

Example 4.1.3. Consider the join graph in Figure we suppose that the
edge in the join graph with the smallest weight is (v2,v5), and we choose
the vertex v, to be the starting point of the chain sampling exploration.
Therefore, chain sampling will explore iteratively, in a breadth-first-manner
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Sampled Edges | (v2,v1) - (v2,03) - (v2,05)

p1 = {(02,01)}

Defined Paths | p, = {(v2,v3)}

ps = {(02,v5)}

Sampled Edges | (v3,v4) - (v5,06) - (v5,07)

pa = {(02,03), (v3,04) }
Defined Paths | p5 = {(v2,0v5), (vs,76)}

pe = {(v2,05), (vs, v7)}
Sampled Edges | (v7,vs)

Defined Paths | py = {(v,vs5), (vs,v7), (v7,08) }

Iteration 1

Iteration 2

Iteration 3

Figure 4.4 The sampled edges and definition of paths at every iteration of the chain
sampling process illustrated in Figure At every iteration, new paths are created by
extending previously explored paths with newly sampled edges.

the path segments branching from vertex v,. The edges in Figure
Figure and Figure are labeled with the path id to which they
belong, and the arrows denote the direction of sampling (i.e. the left and
right operands of the sampling operation). Figure[s.4|enumerates the edges
sampled at each iteration, and illustrates the creation of paths.

Iteration 1 (Figure [4.3b): During the first iteration, all the unexecuted
edges branching from v, are sampled using as input a sample set chosen
from vp. Since the number of outgoing unexecuted edges is three, three
new paths py, p and p3 are created. Paths p;, p2, and p3 contain respectively
the sampled edges (v2,v1), (v2,v3), and (v, v5).

Iteration 2 (Figure [4.3¢): The second iteration samples the next unex-
ecuted edges branching from each of the three defined paths. From each
unexecuted edge e branching from the path p, a new path p’ is created.
Path p’ contains all the edges in p in addition to the newly sampled edge e.
For the previously explored paths p1, p2, p3, we have the following;:
1. Path p;: No unexecuted edge is branching from the end vertex v; of
p1, and therefore no new path is created.

2. Path p,: Path p, has one unexecuted edge (v3,v4) branching from its
end vertex v3. A new path py is created: ps = {(vp,v3), (v3,v4) }.

3. Path p3: Two unexecuted edges (vs,vs) and (vs,v7) branch from
the end vertex vs of path p3. Therefore, two paths are created:

ps = {(v2,05), (vs,v6) } and pe = {(v2,v5), (vs,07) }-
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Iteration 3 (Figure[4.3d): In the third iteration, the only remaining edge
to sample is (v7,vg). The edge is branching from path ps, and therefore
a new path p7 containing the edges in ps and the newly sampled edge
(v7,vg) is created. Note that the edge (vs,v9) branching from path ps is
not sampled since it has already been executed in a previous execution
phase of ROX.

Chain sampling does not necessarily sample all the unexecuted edges
in the join graph before deciding about the superior path to return for
execution. In fact, at every iteration, the chain sampling process notes down
the characteristics of the newly created paths (e.g. cost and selectivity of the
operators in the paths), and compares the observed properties of all paths
sampled so far to decide if one path is so selective that the exploration can
be safely halted. The detected selective path is then returned for execution.
To assist chain sampling in comparing the paths and deciding whether to
proceed with or stop the exploration process, a stopping condition has been
formulated. The stopping condition identifies the existence of a sampled path
segment p that is absolutely superior to every other explored path in the join
graph. The stopping condition guarantees that even if any of the explored paths
other than p is extended with highly selective edges, p remains absolutely superior
to the newly extended paths, making it safe to stop the chain sampling exploration.
If the stopping condition succeeds in finding a path p that is absolutely
superior to all the other explored paths, then the chain sampling process is
halted and p is returned for execution. As we have noted earlier, p is also
superior to all the explored paths. The chain sampling process and the
proposed stopping condition are explained in more detail in Section

In this section, we have given a general description of ROX in which
optimization and execution steps are alternated. We have also briefly
explained the optimization phase of ROX introducing the adopted chain
sampling technique. In the next section, we give an elaborate description
of the ROX algorithm.

4.2 The ROX Algorithm
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Before we start the presentation of the ROX algorithm, we make the
following note.

Note 4.2.1. Given the edge e with its two vertices v; and v,, the sampling
with cutoff limit T and the execution of e is represented in the ROX
algorithm with the following two respective operations:

e >(op(e, SMPL(v1), TBL(v7)))

e exec(e, TBL(v1), TBL(vy))
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Although the above operations are represented as a join between the sample
or full table associated with the vertex v; and the full table associated with
vy, we stress that they correspond to only the logical representations of the
sampling and execution operations, and should not be interpreted as the
physical implementations used to actually carry out these two operations.
In fact, the sampling and execution operations might be processed using
different strategies, e.g. using an index-based join. Therefore, we note that
the above operations do not require the pre-materialization of the full table
TBL(v,) to carry out the sampling or execution of the join.

To make the description of the ROX algorithm easy to follow, we
adopt the above logical representation for the sampling and execution
operation of edges, and, for the time being, abstract away the details of
the implementation of these two operations. We will describe in detail
the actual physical implementation of the operations in Section |5.2| when
presenting the ROX prototype.

The ROX algorithm is given in Algorithm |1} It takes as input the join graph
G containing the to-be-ordered join operators, the limit for cutoff-sampling
7, and the size 7’ of the sample tables associated with the vertices in the
graph. The algorithm consists of two phases. The first phase initializes the
join graph. The second phase is the core of the algorithm, in which search
space exploration using chain sampling and path segment execution are
alternated until all edges in the graph are executed. We now proceed with
describing in detail the two phases.

4.2.1 Phase 1 (Algorithm[1}: lines[T{9)

This first phase initializes the join graph by acquiring knowledge about its
vertices and edges. As we will see, for some of the vertices and edges in
the graph, no information can be learned.

* Learning about vertices (Algorithm [i} lines [i}j7): Indexes are ex-
ploited to acquire knowledge about the vertices in the graph. For
a vertex v, the corresponding index is sampled to build a subset
SMPL(v) of size T’ of the XML nodes corresponding to v (line
line @ The index is also used to estimate the cardinality card(v)
of the vertex v, i.e. to estimate the total number of XML nodes cor-
responding to v, (line [g} line [7). In principle, the sampling and
cardinality estimation operations are performed for all kinds of ver-
tices as long as a technique that can execute the two operations while
respecting the zero-investment property is available. In the ROX
prototype, the sampling and cardinality estimation operations are
restricted to vertices representing either an XML element type with
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Algorithm 1: ROX: RUN-TIME OPTIMIZER FOR XQUERIES

1

2

8
9

10

11

12
13
14
15
16

17

INPUT : Join Graph G = (V,E), Int 7, Int 7/
// T= limit for cutoff-sampling, 7' = size of the sample

tables associated with the vertices in the graph

// Initialization phase

FOREACH ¥ € V DO

IF U is an element type with qualified name q THEN
elt

SMPL(v) — (v (9));
Dy

card(v) «— EstCard(vr(q)) ;

ELSE IF v is a text node with predicate “= x” THEN

Diext

SMPL(v) «+— > (v (x));
D(’X

card(v) « EstCard( tvt(x)) ;

FOREACH e = (v1,vp) € E | SMPL(v;) # NULL V SMPL(v;) # NULL DO
| w(e) — WeiGHT(e);

// Core phase: alternation of optimization and execution
WHILE 3 more edges to execute DO
Path p ; // p = sequence of operators to be executed

Edgee = (v1,v2) |e € EAw(e) = migw(ei);
(1S

IF |edges™ (vq)| > 1V |edges™ (v2)| > 1 THEN
| p < CHAINSAMPLE(e);
ELSE

| pe{eh

ExecPATH&UPDATE]G(p);

qualified name g or an XML text node with an equality predicate con-
dition = x (line[2} line[5). We note that the type of indexes supported
in the ROX implementation cannot be used to lookup nor to estimate
the total number of tuples corresponding to vertices representing
either an XML text node without a predicate condition or with a
predicate condition different than equality, or an XML attribute node
with or without a predicate condition. A detailed description of the
indexes implemented in the ROX prototype is given in Section
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* Learning about edges (Algorithm [1} lines [8}jg): For an edge e in
the join graph, the weight of e, i.e. the result size of the operator
associated with e, is computed. The weight w(e) is estimated with the
Weight function which uses the cutoff-sampling technique described
in Section[3.2] Since the computation of the weight of an edge consists
of sampling the edge using as input a sample chosen from one of
its vertices, an edge e = (v1,v;) with two vertices that do not have
a materialized sample (SMPL(v;) = SMPL(v,) = NULL) will stay
initially unweighted.

The WEIGHT Function

We now describe the Weight function presented in Algorithm |2| The
function takes as input an edge ¢ = (v,v’) and returns its weight which
is estimated by sampling the operator associated with e. First the left and
right operands of the sampling operation are determined, in other words
the table from which to pick the input sample is specified (lines [2{z0).
There are two criteria that define our choice: the availability of materialized
samples associated with the edge’s vertices, and the estimated cardinality
of each vertex. If the edge’s two vertices v and v’ have a materialized sample
table, then the input sample is selected from the vertex with the smaller
estimated cardinality (lines [2}6). The reasoning behind our choice is that
picking a sample from a smaller table results in a more representative
sample set which in turn leads to a more accurate cardinality estimation. If
only one of the vertices has a materialized sample, then the only possible
choice is to choose the input sample set from that vertex (lines [7}f10).

Once the left and right operands lopd and ropd of the sampling operation
are determined, the operator associated to the edge e is cutoff-sampled
with the limit T using as input the sample table SMPL(lopd) and the full
table TBL(ropd) (line [11). The weight of the join is then estimated using
the hit ratio value returned by the sampling operation (line [12).

Note about the sampling of edges: The above sampling operation is
represented as a join between the sample table SMPL(lopd) and the full
table TBL(ropd). As mentioned in Note we stress that the sampling
operation can be executed differently and therefore the table TBL(ropd)
does not need to be pre-materialized. We elaborate on the implementation
details of the sampling operation in Section

Now that we have explained the initialization phase of the ROX algorithm
in which knowledge about the cardinality of the vertices and the weight
of the edges in the join graph is acquired, we proceed with describing the
second and core phase of ROX.
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Algorithm 2: WEIGHT

INPUT : Edge e = (v,7)
OUTPUT: Int weight

1 Vertex List (lopd, ropd) = (NULL, NULL);

// Determine sampling direction of e
1F SMPL(v) # NULL A SMPL(v') # NULL THEN
1F card(v) < card(v') THEN
| (lopd, ropd) = (v,7');
ELSE
| (lopd, ropd) = (', v);

S U s W N

ELSE IF SMPL(v) # NULL THEN
8 | (lopd,ropd) — (v,7');

9 ELSE

w | (lopd,ropd) — (v/,0);

~

// Cutoff-sampling of e
11 (S, hr) < > (op(e, SMPL(lopd), TBL(ropd)));

// Compute weight of e
1z Int weight «— card(lopd) x hr;

13 RETURN weight;

4.2.2 Phase 2 (Algorithm [T} lines [TO}{17)
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The second phase of the algorithm represents the core of ROX. It consists
of the alternation of optimization and execution steps until all edges in the
join graph are executed. Optimization starts by picking the unexecuted
edge e in the graph with the smallest weight (line[12). This edge represents
the operator that is estimated to return the smallest number of tuples.
However, as we have stressed earlier, the edge ¢ might be a local minimum,
and its execution would be a greedy decision. Therefore, chain sampling
is used to climb the hill and find a global minimum (line [14). Chain
sampling initiates an exploration process in search for a path segment
p (sequence of joins) that is superior to all other explored paths in the
join graph including the chosen edge e. The selected path segment p is
then returned for execution. The search for p starts from the edge e and
explores the branches of unexecuted edges around e. Therefore, if each
of the vertices of ¢ have at most one unexecuted outgoing edge, chain
sampling is not applied. In that case, the path segment p to be executed
consists of the singleton edge e (line[16). The chain sampling process is
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given in Algorithm [5} and will be explained in detail in Section [4.3] Once p
is defined, the execution step of ROX starts (line[17). The execution phase
executes the operators associated with the edges in the path segment p and,
using the newly materialized intermediate results, updates the knowledge
about the vertices and edges in the join graph. The execution phase is
given in Algorithm [3| and will be described next. Optimization phases
based on chain sampling and execution phases are alternated in ROX until
all operators in the join graph are executed.

The EXECPATH&UPDATEJG Function

Given a path segment p, the EXECPATH&UPDATE]G function presented in
Algorithm [3] executes every edge ¢ = (v1,v;) € p (lines [1fr1). Before the
execution, the XML nodes corresponding to each of the edge’s vertices
v1 and v, are first retrieved, in case the full tables TBL(v;) and TBL(v;)
have not been materialized yet (lines |2ljg). Similarly to the first phase
of ROX, available indexes are used to look-up the corresponding nodes.
Therefore, the full table of only those vertices that represent either an
element type with a certain qualified name or a text node with an equality
predicate condition are materialized. For the other types of vertices and
given the available indexes, it is not possible to efficiently retrieve their
corresponding XML nodes. The full table associated with the vertex
representing the document’s root is a singleton relation containing the
value 1 of the root node’s id. In this situation we are supposing a single
document is queried; however, this is easily generalizable to a collection
of documents. In the latter case, the full table will contain the id value of
the root of each individual document in the collection. Next the execution
direction of the edge (i.e. the left and right operands (lopd, ropd) of the join)
is determined using the function ExecutioNDIRECTION (line [10) which is
presented in Algorithm [4} and explained in the subsequent section. The
edge is then executed as a join between the tables TBL(lopd) and TBL(ropd)
(line [x1).

Note about the execution of edges: We stress again that it might not be
possible to efficiently materialize the full table TBL(ropd), right input of
the execution operation presented above. If that is the case, the join will
be executed differently as we have observed in Note More details
about the implementation of the execution of edges will be presented in

Section

After each execution of an edge ¢ = (v1,v;) in the path p, the knowledge
in the join graph is updated (lines [12}f16). In fact, we have already seen in
Section that, as a result of the execution of an edge in the join graph,
the content of the full tables associated with the edge’s vertices is updated
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Algorithm 3: ExEcCPATH&EUPDATE]G

INPUT : Pathp

// Materialize full tables of vertices of e
FOREACH edge e = (v1,72) € p DO

1

2 FOREACH 0 € {01,075} DO

3 1F TBL(v) = NULL THEN

4 IF v is a root node THEN
id

TBL ;

5 (0)

6 ELSE IF v is an element type with qualified name g THEN
Dyt

7 TBL(v) «— v (9);

8 ELSE IF 0 is a text node with predicate “= x” THEN
Drext

9 TBL(v) — ¥ (x);

// Determine execution direction of e
10 | Vertex List (lopd, ropd) = EXECUTIONDIRECTION e);

// Execute e
11 exec(e, TBL(lopd), TBL(ropd));

// Update knowledge in join graph

12 FOREACH v € {v1,0;} DO

13 SMPL(U) — DT/(TBL(ZJ)),'
14 card(v) «— |TBL(v)|;

15 FOREACH e € edges™ (v) DO
16 | w(e) — WEiGHT(e);

with the result of the execution (refer back to Example [3.1.6). These up-to-
date, newly materialized intermediates are used to gain better and more
accurate knowledge about the vertices and the joins in the graph. For each
executed edge e = (v1,v;), the sample table of each of the vertices v; and
vy is updated with a new sample randomly chosen from the full tables of
respectively v and v; (line[13). The cardinality of the vertices is updated
as well with the size of the corresponding full tables (line [14). Finally the
weight of the outgoing unexecuted edges of v; and v; is re-estimated using
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the newly created samples and materialized tables (lines [15/{16). Note that
previously computed weights are also updated: the edges are re-sampled
using as input the newly materialized sample tables. This is a crucial
feature of ROX: simply adjusting the already computed weights by, for
instance, multiplying with the join hit ratio of the executed path would
not suffice as this implies an independence assumption. By re-sampling,
ROX is able to detect and naturally adapt its optimization decisions to the
arbitrary correlations existing between the vertices in the join graph.

We now describe the ExEcuTtoNDIRECTION function.

The EXECUTIONDIRECTION Function

Given an edge ¢ = (v1,v;), the EXECUTIONDIRECTION function, presented
in Algorithm [4} determines the edge’s execution direction. If the full
tables of the two vertices of e are materialized, then the execution can be
accomplished in two ways: either with TBL(v;) and TBL(v;) as respectively
the left and right operands (i.e. TBL(v1) >1 TBL(v;)) or the other way
around (i.e. TBL(v;) <t TBL(v1)). The best execution direction to choose
is the one with the smallest execution time. To estimate the execution
time of the two strategies, the ExecuttoNDIRECTION function samples the
edge in both directions, takes note of the execution time of each sampling
operation, and extrapolates each of the measured times to estimate the
processing time of an execution using the full tables (lines [2{fzo). Therefore,
the edge e is sampled using as input a sample chosen first from v; and
then from v, (lines[3}[5). The two sampling operations are timed and the
noted times are linearly extrapolated to take into account all the tuples
in the full table of the left operand (lines [4} [f). The time of the two
sampling operations is compared, and the execution direction is chosen
to be the same as the direction of the sampling operation that has the
smaller estimated execution time (lines [7}{10). We stress that one of the
two sampling operations executed in this algorithm might already have
been performed during the previous optimization step. Therefore, with
some additional engineering, the redundant sampling operation can be
optimized away. We chose to explain the ExecuTioNDIRECTION function
with the avoidable sampling operation for readability reasons.

If the full table of only one of the two vertices is materialized, then the
vertex with the materialized full table is used as the left operand for the
execution (lines [r1}fr4). The join can then be executed using for instance
an index built on the right operand.

Example 4.2.2. We explain the linear extrapolation of the measured times
performed by the algorithm using the following example. Let the edge

(v1,v7) be sampled with the following operation: t; = TIME((S, hr) «—
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Algorithm 4: ExecuttoNDIRECTION

INPUT : Edge e = (vq,02)
outpuT: Vertex List (lopd, ropd)

Vertex List (lopd, ropd) = (NULL, NULL);
1¥ TBL(v;) # NULL A TBL(v;) # NULL THEN
Time ; = TIME((S,hr) — >r(ople, SMPL(vl),TBL(vz)))> ;

=Y

N

\ =t x hrxc‘asrfl(vl),_

. | Timet, = TIME((S, hr) — > (op(e, SMPL(vz),TBL(vl)))>;
. ty = by X hrxc‘asrii(vz);

7 1F 1 < tp THEN

8 | (lopd, ropd) = (v1,0);

9 | ELSE

10 | (lopd, ropd) = (v, v1);

11 ELSE IF TBL(v1) # NULL THEN
= | (lopd,ropd) = (v1,v5);

13 ELSE

1y | (lopd,ropd) = (vy,v1);

15 RETURN (lopd, ropd);

>200(op(e, SMPL(v1), TBL(ZJz)))) . We suppose the following: [SMPL(v1)| =

100, card(vy) = 20000, |S| = 200, hr = 4, and t; = 1.5msec. Since the estim-
ated join hit ratio hr is equal to 4, then the result size of the join associated
with (v1,v;) is estimated to be equal to hr x card(v;) = 80000. It took
1.5msec to generate the portion of 200 tuples (the set S) from the full result,
therefore generating all the 80000 tuples in the full result will require

1.5 x hrxcard(vy)

5] = 60msec.

We have presented the ROX algorithm, explaining the alternation of its
optimization and execution steps and describing the way it acquires and
updates its knowledge about the vertices and edges in the join graph. We
have explained in detail the execution phases of ROX but we have not
elaborated yet on the chain sampling technique which is the core of the
optimization phases. The next section gives a detailed description of chain
sampling and its algorithm.
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4.3 Chain Sampling

The exploration of the join graph search space is performed through chain
sampling. Chain sampling takes as input the edge with the smallest weight
e = (v1,v2), and analyzes the path segments branching from one of the
vertices of e in search for a path p that is superior to all explored paths.
The superiority of p implies that the execution of p followed by any of
the other explored paths p’ is cheaper than executing p’ and then p. In
fact, the input edge e is suspected to be only a local minimum due to
potentially existing correlations between the joined vertices. The function
CHAINSAMPLE invests a small amount of time to climb the hill in search for
a global minimum, “making sure” that the existing correlations are detected
and that the chain of operators that might produce an intermediary result
with smaller cardinality is spotted and returned for execution.

Given a vertex v of the edge e, the path segments branching from v are
sampled iteratively in a breadth-first manner. In every iteration, new path
segments are created by sampling one additional unexecuted edge in every
possible direction. Chain sampling assigns to every path a set of properties
which are used to keep track of the sampling process and to compare
the paths. At the end of every sampling iteration, a stopping condition
compares the properties of the paths to check if one path is absolutely
superior to all the other explored paths. If such a path is detected, then
the exploration can be safely halted and the chosen path is returned for
execution. If at the end of every iteration no absolutely superior path is
found, chain sampling progresses until all the edges in the join graph
are sampled. Then the SUPERIORPATH function chooses the path p that is
superior to all the explored paths so far, and returns p for execution.

Before we give a detailed description of the chain sampling algorithm,
we define the sampling operations executed during chain sampling and
the properties assigned to the explored paths.

4.3.1 Sampling Operations Executed during Chain Sampling

Given a join graph G, we suppose that during one of the optimization
steps of ROX, the path segment p = {(vq,v2), (v2,v3),..., (Vy—_1,0n)} is €x-
plored through chain sampling. The edges in p are sampled consecutively,
with each chain sampling iteration sampling exactly one edge at a time.
The sequence of edges are sampled by executing the following sampling
operations (for more information on cutoff-sampling a sequence of joins,

refer back to Section [3.2.2):

(52, hrl) — \ZT(SMPL(Ul) < TBL(Z)z))
(S3,hry) = P1(S > TBL(v3))
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Sampled
Edge

Iteration | Path Sampling Operation

(S11,hr11) + Bo(
Iteration 1 | p, (Sa1,hr21) < >1(SMPL(v,) < TBL(v3))
p3 (531,1’11’31) — \ZT(SMPL(T)z) > TBL(U5))

( ) (SMPL(vp) 1 TBL(v1))
(v2,03)
(v2,05)

pa | (v3,04) (S22, o) B¢
(vs,v6)
( )
(v7,vs)

P1

Iteration 2 | ps (S3p, hr3p) «—

(542,h742) —
(S43,hr43) < >1(Sqp > TBL(vg))

Pe
Iteration 3 | p7

U5, 07

07,08

Figure 4.5 The sampling operations executed for every path segment at every iteration
of the chain sampling process illustrated in Figure [4.3] The input sample to the sampling
operation performed during the first iteration is the sample table of the start vertex v. The
subsequent operations use as input sample the output generated by the sampling operation
executed during the previous iteration. The generated output and their usage as input
samples are indicated in bold.

(Sp—1,hrn—2) — P2(Sp—2><TBL(v,_1))
(Sn,hi’n_l) — ET(Sn—l > TBL(Un))

The first chain sampling iteration uses as input the sample table associated
with the starting vertex v;. Every subsequent iteration uses as input
sample the result generated by the sampling operation executed during
the previous iteration.

Continuation of Example We reconsider the join graph and chain
sampling process presented in Example and Figure The edge
with the minimum weight was identified to be (v, v5) and the vertex from
which to start the exploration was chosen to be v;. Figure [4.5)illustrates the
sampling operations executed at every iteration and for every path segment.
The sampling operations executed during the first iteration use as input
the sample table associated with the start vertex v, of the edge with the
smallest weight e = (v, v5). During the subsequent iterations, the input
sample of the sampling operations corresponds to the output generated
by the sampling operation executed during the previous iteration (the
generated output and their usage as input samples are indicated in bold).
This is an important feature of chain sampling, as it allows the detection of
arbitrary correlations between the joined vertices.
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In the following, we define the properties that chain sampling assigns to
every explored path p.

4.3.2 Properties Associated with Path Segments

Given a path segment p, we define the following properties associated with
p:
hr : Path — R
hr(p) is the hit ratio of path p. It represents the hit
ratio of the sequence of join operators in p.

cost : Path — R
cost(p) is the cost of the path p. It represents the
cumulative estimated cardinality of the
intermediate result generated by the
consecutive execution of the join operators

in p.

I : Path — Table
I(p) is the input sample of p. It represents the sample
table to be used as input to the sampling
operation that will be executed during the next
iteration of chain sampling.

StartVertex : Path — Vertex

StartVertex(p) : is the start vertex of p. It represents the
vertex from which the next chain sampling
iteration resumes the search space exploration.

The hit ratio of a path segment is equal to the hit ratio of the sequence
of joins it contains. We have explained in Section that the hit ratio
of a sequence of joins can be derived by multiplying the hit ratio of each
individual join when the joins are sampled consecutively. Therefore, the
hit ratio of a path segment is equal to the multiplication of the hit ratio of
each of its individual join operators.

We now explain the cost of a path. Given a join graph G, we suppose
that the following path segment p = {(v1,v2), (v2,03),..., (vy_1,0n)} is
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sampled during the chain sampling process initiated by one of the optim-
ization steps of ROX. To ease the explanation, we represent p in terms of
relations and join operators instead of edges. The path p is then equal to
the sequence of joins Ry > Ry < ... 1 R, where R; = TBL(v;) for i € [1,n].
The path p is then sampled with the following operations:

(Sz, hi’l) — ET(SMPL(Z)1> > Rz)

(S3,hrz)  — B(S2Rs)

(Snflz hrn—Z) — ET(SH—2 > Rnfl)
(Sn,hrn,l) — ET(Sn,1 D] Rn)

We have defined the cost of a path to be equal to the cumulative estimated
cardinality of the result generated by the consecutive execution of its joins.
We therefore have the following:

cost(p) = card(Ry <1 Ry) 4+ card(Ry > Ry I R3) + - - - +
card(R1 I Ry ... X1 Ry)

= |R1| X hT(Rl D<1R2) + ‘R1| X hT(Rl > Ry R3) —+ -+
[R1| X hr(Ry >Ry ... X Ry)
by Definition
2 n—1
~ |Ry| x hry 4 |Ry| x [ TIBig(hr;) + -+ 4 [Ra| x [ ] (hri)
= i=1

i=1
by Definition

2 n—1
= |Rq| x <hr1 + H(hrl-) 4+t H(h”i)>

i=1 i=1

- ®ix & (TT0m)

j=1

~ card(vy) X (S (I]—[(h”z)>

4.3.2.1 Formal Definition of the Path Properties

We now give a formal definition of the introduced path properties. Given
a join graph G, we suppose that the following path segment
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p = {(v1,v2),(v2,03),...,(vy_1,0,)} is sampled during the chain sampling
process initiated by one of the optimization steps of ROX. The edges in p
are sampled by consecutively executing the following sampling operations:

(Sp,hr1)  «— >£(SMPL(v1) <t TBL(v7))
(S3,hra) (52> TBL(v3))

(Su—1,hryn—2) < D>¢(Sp—2 > TBL(v,_1))
(Sn/hrn—l) — ET(Sn—l > TBL(Un))

We then have the following:

mip) = [10m)

StartVertex(p) = oy

In the subsequent sampling iteration, one of the outgoing edges of the
vertex StartVertex(p) is sampled and a new path p’ is created. We suppose
the sampled edge to be (v, v,41). Path p’ contains the edges of p and the
newly sample edge (v, v,41). The sampling operation of (v, v, 1) uses
as input the sample table I(p) associated with p:

(Su+1,hrn)  — >¢(Sy <A TBL(v,41))
The properties of the path p’ are assigned the following values:

wip') = T10m)

StartVertex(p') = v,11
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We note that the hit ratio and cost of the path p’ can also be computed
iteratively using the properties associated with the path p as shown below:

wip') = T10m)

n—1
= (hry) x hry
i=1
= hr(p) X hry
n ]
cost(p') = card(vy) x ) (H(hm)
j=1 \i=1
n=1,J n
= card(vy) x (H(hrﬁ) + card(vy) x [ J(hri)
i=1 i=1

= cost(p) + card(vy) x hr(p')

Therefore, given a path p’ newly created by extending path p with the edge
e, we note that the hit ratio of p’ is equal to the hit ratio of p multiplied
with the hit ratio of the sampled edge ¢, and that the cost of p’ is the sum
of the cost of p and the estimated result size of the edges in the p’.

Note 4.3.1. We note that
cost(p;)) =0 = hr(p;)) =0

In fact, if cost(p;) = 0 then no intermediate tuples have been generated by
any join operator in p;. A join operator which generates an empty result
has a hit ratio equal to 0. Therefore, hr(p;), the multiplication of the hit
ratio of all the joins in p;, is equal to 0.

Continuation of Example We reconsider the join graph and chain
sampling process presented in Example and Figure The edge
with the minimum weight was identified to be (v;,v5) and the vertex
from which to start the exploration was chosen to be vp. Figure |4.6|and
Figure|4.7]illustrate the value of the properties associated with the created
paths at every iteration. We refer the reader to Figure |4.5|for the sampling
operations executed at every iteration.

Iteration 0: Before chain sampling starts (iteration 0), an empty path p is
initialized with the properties StartVertex(p) and I(p) respectively equal to
the starting vertex v, and the sample table SMPL(v;) associated with v;.
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Iteration Path hr I StartVertex
Iteration 0 p - SMPL(v;) v
p1 hryy S11 v
Iteration 1 P2 hryq Syt U3
p3 hr3 S31 U5
P4 hr(p2) X hryp Sy V4
Iteration 2 ps hr(p3) x hrap S3p Vg
e hr(p3) X hryp Su vy
Iteration 3 p7 hr(pe) X hra Su3 vg

Figure 4.6 The hit ratio, input sample, and start vertex properties of every path segment
explored during the chain sampling process illustrated in Figure[4.3] The executed sampling
operations are listed in Figure[4.5]

Iteration Path cost

Iteration 0 p -

p1 card(vy) X hr(py)
Iteration 1 %) card(vy) X hr(py)
p3 card(vy) X hr(ps)

P4 cost(pp) + card(vy) X hr(py)
Iteration 2 ps cost(p3) + card(vy) x hr(ps)
(p3) (v2) X hr(ps)

P cost(p3) + card(vy) x hr(pg

Iteration 3 p7 cost(pe) + card(vy) x hr(py)

Figure 4.7 The cost property of every path segment explored during the chain sampling
process illustrated in Figure[4.3] The executed sampling operations are listed in Figure [4.5]

Iteration 1: During the first iteration, all the unexecuted edges of v, are
sampled using as input the sample table I(p). Since the number of edges
is three, three new paths p1, pp, and p3 are created. Path p;, p2, and ps3
contain respectively the sampled edges (v, v1), (v2,v3), (v2,v5). The hit
ratio and cost of each path are equal to respectively the hit ratio and the
estimated result size of the sampled edge. The input sample I(p1), I(p2),
I(p3) is equal to the output table generated by the corresponding sampling
operation. The vertex from which to start the search exploration in the
next iteration for each of p1, py, and p3 is equal to the end vertex of the
sampled edge: respectively v1, v3, and vs.
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Iteration 2: The second iteration attempts to sample the unexecuted
edges branching from the StartVertex of each of the three defined paths.
In case of p, its start vertex v; has no outgoing unexecuted edges. The
start vertex of p, has one outgoing edge (v3,v4), therefore a new path py
is created (ps = p2 U {(v3,v4)}). The start vertex of p3 has two outgoing
unexecuted edges (vs, vg), and (vs, v7), therefore two new paths are created:
ps = p3 U {(vs5,v6)} and ps = p3 U {(vs,v7)}. The properties associated
with py, ps, and pe are updated correspondingly. The input sample is equal
to the output generated by the sampling operation of the edge, and the
start vertex of py, ps, and pg is equal to the end vertex of the sampled edge:
respectively vy, v5, and vg.

Iteration 3: In the third iteration, the start vertex of only path pg has
an outgoing unexecuted edge (v7,vs), therefore one additional path py is
created and its properties are defined. Chain sampling stops since there
are no more unexecuted edges to explore.

We conclude the following: given an explored path p and an unexecuted
edge (v,v') branching from the start vertex of path p, chain sampling
samples the edge (v,v’) using as input the sample table I(p). A new path
p' is created: p’ = pU {(v,7')}. At the end of the sampling iteration, the
properties of path p’ are defined. The input sample I(p) is updated to the
output generated by the sampling operation. The start vertex StartVertex(p)
is equal to ©’. The hit ratio hr(p) is equal to the hit ratio of p multiplied by
the hit ratio of the newly sampled edge (v,v’). The cost cost(p) is equal to
the sum of the cost of p and the estimated result size of the sequence of
join operators in p’.

As we will see in the next section, in which we present the CHAINSAMPLE
algorithm, chain sampling does not necessarily sample all the unexecuted
edges in the graph before determining the path to return for execution. A
stopping condition is used to assist chain sampling in deciding whether
to initiate a new sampling iteration or to halt the exploration process and
return the absolutely superior path just found.

4.3.3 Chain Sampling Algorithm
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The CHAINSAMPLE function (Algorithm [5) takes as input the edge e =
(v1,v2) with the smallest weight. It explores the collection of edges around
e and returns for execution the path p that is found to be superior to all
the explored paths.

First the vertex of e used as a starting point of the chain sampling explora-
tion is determined (line [1) using the function STARTINGVERTEX, explained
shortly. When the start_vertex is chosen, a first path p is initialized with
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Algorithm 5: CHAINSAMPLE

N U AW

10
11

12

13

14
15
16
17
18
19
20

21

22
23
24
25

26

27

28

inruT : Edge e = (vq,02)
OUTPUT: Path p

Vertex start_vertex < STARTINGVERTEX(e) ; // Determine the
vertex from which to start the chain sampling exploration

// Initialization of path
Path p — {};

StartVertex(p) <« start_uvertex;
I(p) < SMPL(start_vertex);
Path List all_paths = {};

Path List new_paths = {p};

// Increase the cutoff-sampling limit by incr. In the
prototype incr = T, but another value can be used

int incr «— T;

int LIMIT « T + incr;

// Iterative exploration of path segments
WHILE 3 more edges to sample Do

Path List current_paths < new_paths;
new_paths = {};

FOREACH Path p € current_paths po

Vertex v «— StartVertex(p);

FOREACH Edge ¢/ = (v,7') € (edges™ (v) \ p) pO
Pathp’ — pU{e'};

(S,hr) < Brrr(op(e’, I(p), TBL(?'));

hr(p") < hr(p) x hr;

cost(p') « cost(p) + hr(p’) x card(start_vertex);
I(p') < S;

StartVertex(p') «— v/;

new_paths.INSERT(p');

all_paths = all_paths U new_paths;

Path p < STorPINGCONDITION (new_paths, all_paths);

IF p 7 NULL THEN
RETURN p ; // Chain sampling safely halted since an
absolutely superior path is found

LIMIT « LIMIT +incr; // Increase cutoff-sampling limit

Path p < SuPERIORPATH(all_paths) ; // No absolutely superior
path was found, so we return the superior path
RETURN p;
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StartVertex(p) = start_vertex and I(p) = SMPL(start_vertex). Path p is ad-
ded to the list new_paths (lines [2}j6). Additionally, the LIMIT used in the
cutoff-sampling operations of chain sampling is initialized. We choose to
increase the initial cutoff limit (7) by incr to allow for a bigger and there-
fore more representative generated result (lines [7}{8). This is performed
to counteract the propagation of possible estimation errors during chain
sampling. In the prototype, we choose incr to be T, but other values might
also be used. In fact, we have not explored what the best value of incr is.

Next, chain sampling starts its iterative exploration of path segments
(lines [9l26). For each path p in the list current_paths (current_paths =
new_paths), all the outgoing unexecuted edges of the start vertex of p that
are not yet contained in the path segment p are explored. For each such
unexecuted edge ¢’ = (v,7’), the following steps are performed:

1. A new path p’ is created, and initialized to all the edges in p and the
edge ¢ (line [15).

2. The edge ¢’ is cutoff-sampled using as left operand the input sample
I(p) associated with path p (line[16).

3. The hit ratio of p’ is assigned the value of the multiplication of hr(p)
with the hit ratio returned by the sampling operation of ¢’ (line [17).

4. The cost of p’ is initialized to the sum of cost(p) and the estimated
result size of the sequence of joins in p’ (line [18).

5. The input sample of p’ is equal to the output generated by the
sampling operation of ¢’ (line .

6. The start vertex of p’ is equal to the end vertex v’ of the sampled

edge ¢ (line 20).
7. The path p’ is added to the list new_paths (line .
The above process is repeated for every path p € current_paths.

After sampling the next unexecuted edges of every path p in the list
current_paths, the SToPPINGCONDITION function (line compares the
hit ratio and cost properties of the newly created paths to all the paths
sampled so far to determine if it is safe to stop the chain sampling process
or if a new exploration iteration should be initiated. The function searches
for a path p that is absolutely superior to all other paths: the execution of
p followed by the execution of any other path p’ is cheaper than executing
p’ alone. If such a path p exists then chain sampling can be safely stopped
and p is returned for execution (lines [24{{25). We explain the stopping
condition in Section [4.3.5

If none of the paths in the list new_paths is absolutely superior to the others,
chain sampling initiates a new sampling iteration. It also increases by incr
the value LIMIT to be used in the cutoff-sampling operations which will
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be performed during the new exploration iteration (line [26). This results
in a larger and more representative output generated by the sampling
operations, therefore counteracting the possible creation and propagation
of estimation errors possibly introduced during the previous sampling
iterations.

If no absolutely superior path is found at the end of every chain sampling
iteration and all path segments in the join graph are sampled, the SUPERI-
ORPATH function compares all the explored paths to choose the superior
path among all (line 7). The chosen path is returned for execution
(line [28). The SUPERIORPATH function is explained in Section

The STARTINGVERTEX Function

The STARTINGVERTEX function is presented in Algorithm 6} The function
takes as input an edge e = (v1,v;) and returns the vertex of e from which
to start the chain sampling exploration. Three criteria determine the choice
of the start vertex (start_vertex): the availability of materialized samples
associated with the edge’s vertices, the number of outgoing unexecuted
edges of each vertex, and the estimated cardinality of each vertex. If the
edge’s two vertices v; and v, both have a materialized sample table, and
more than one outgoing unexecuted edge, then the start vertex is chosen
to be the vertex with the smaller estimated cardinality (lines [2}f7). The
reasoning behind our selection is that picking the sample from a smaller
table results in a more representative sample set to use as input in the first
iteration of chain sampling. This in turn leads to the generation of a more
representative result which will be used as input in the next iterations.
If only one of the vertices has more than one outgoing unexecuted edge,
then that vertex is used to start the exploration (lines [8lfz1). Finally, if only
one of the vertices has a materialized sample table, then the only possible
choice is to pick the sample to be used as input in chain sampling from
that vertex (lines [12H16).

Given the edge ¢ with the smallest weight, the chain sampling process is
initiated by ROX to explore the join graph in search for a superior path
using the edge e as starting point of exploration. When all the edges in the
graph are sampled, the SUPERIORPATH function determines the path that
is superior to all the explored paths and returns it for execution. In order
to make the search more efficient, the SToPPINGCONDITION function is
used after each sampling iteration to detect the existence of an absolutely
superior path p to return for execution. The stopping condition guarantees
that if chain sampling would progress, no path superior to p would be
found, and the SuPERTIORPATH function will at the end of chain sampling
still choose p for execution. Next, we explain the SUPERIORPATH function
and then describe the proposed stopping condition.
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Algorithm 6: STARTINGVERTEX

inruT : Edge e = (vq,v2)
OUTPUT: Vertex start_vertex

1 Vertex start_vertex < null;

2 IF SMPL(v1) # NULL A SMPL(v;) # NULL THEN
3 IF |edges™ (v1)| > 1 A |edges™ (v2)| > 1 THEN
4 1F card(v1) < card(vp) THEN

5 | start_vertex «— vy;

6 ELSE

7 | start_vertex «— vy;

8 | ELSEIF |edges  (v1)| > 1 THEN

9 | start_vertex «— vy;

10 ELSE

1 | start_vertex «— vy;

12 ELSE

13 IF SMPL(v1) # NULL THEN
14 | start_vertex = vy;

15 ELSE

16 | start_vertex = vy;

17 RETURN start_vertex;

4.3.4 The SUPERIORPATH Function

Before we start explaining the SUPERIORPATH function, we introduce the
following notation.

Definition 4.3.2. Given two paths p; and p; explored during chain sampling,
we define the notation cost (pj|p;) as follows:

cost(pjlp;) is the cost of path p; after having executed the path p;

We estimate the value of cost(p;|p;) to be:
cost(pjlpi) = cost(pj) x hr(pi)

The above formula estimates the cost of executing the sequence of joins in
path p; using the data returned by the execution of p;. The intuition behind
the formula is as follows. Suppose that the vertex v in the join graph is
the starting point of the chain sampling exploration and that card(v) = X.
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Algorithm 7: SUPERTIORPATH

INPUT : Path List all_paths

// all_paths = list of all path segments that have been
explored during chain sampling

outpruT: Path p

1 FOREACH Path p; € all_paths po

2 IF
cost(p;) + cost(pj|p;) < cost(p;) + cost(p;|p;) ¥V p; € all_paths | i # j
THEN

3 RETURN p; ; // Path p; is superior to all the other

paths in the list all_paths, therefore p; is returned
for execution.

Knowing that the hit ratio of p; is hr(p;), we estimate that the execution
of the operators in p; using as input the full table TBL(v) will generate a
result of size X x hr(p;). We also know that the cost of executing p; using
as input the X tuples in table TBL(v) is cost(p;). Therefore, the execution
cost of path p; after having executed p;, i.e. using as input the output of size
X x hr(p;) generated by p;, is estimated to be the value cost(p;) x hr(p;). For
example, if cost(p;) was estimated to be equal to 1000 and the execution of
pi is estimated to reduce the intermediate result by half (i.e. hr(p;) = 0.5),
then the cost of executing p; after p; is estimated to be equal to 500.

The SuPeERIORPATH function is given in Algorithm |y It takes as input the
list all_paths which contains all the path segments that have been explored
during chain sampling. The algorithm compares in a pairwise fashion the
paths in all_paths to find the path that is superior to the others. Given a
path p; € all_paths, p; is compared to every other path p; € all_paths using
the following inequality (line [2):

cost(p;) + cost(pjlpi) < cost(p;) + cost(pilp;) (4.1)

The inequality checks if the execution of path p; succeeded by the execution
of any other path p; (p; € all_paths) is cheaper than first executing p;
followed by p;. If the path p; satisfies the above inequality for all other
paths p; € all_paths, then p; is a superior path and is returned for execution
(line [3).

It may seem like a large number of path comparisons is performed, but a
path p; which fails to be superior to any other path is directly disregarded
by the algorithm, and the next path in the list all_paths is then checked for
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superiority. Moreover, the comparisons can be implemented in an efficient
manner (e.g. by first sorting the paths), hence reducing the amount of time
spent on the superiority checking.

Definition 4.3.3. Given two paths p; and p;, we define the superiority
relation < as follows:

pi2pj = cost(pi) + cost(pjlpi) < cost(pj) + cost(pilp;)

Therefore, given a set of paths P, we say that the path p; is superior in P if
andonly if p; <p;  Vp €P|i#].

Definition 4.3.4. Given two paths p; and p;, we say that p; and p; are
equivalent if and only if the following three statements hold:

Lpi #
2. pi 2 p;
3. pj 2 pi
In other words, p; and p; are equivalent if and only if:

pi # pj and
cost(p;) + cost(pjlpi) = cost(pj) + cost(pilp;)

Lemma 4.3.5. Given a set P of paths explored during chain sampling, we claim
that there exists at least one superior path p; € P.
In other words, Ip; EPV p; €P|i#j = p; 2p;

Proof. Given a set P of paths explored during chain sampling, we prove
the claim in Lemma by proving that the set of paths P is linearly
ordered modulo path equivalences under the relation <. We therefore
need to prove that the relation < satisfies the following three properties
for all paths in P:

1. Reflexivity:

piXpi VpieP
2. Totality:

piZpi Vpi=pi  Vpup €P
3. Transitivity:

piZpi ANpjZpk = PiZpPk Vpipppk€P
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In the following, we prove each of the above properties.
Reflexivity

Given a path p; € P, we have:

cost(p;) + cost(p;) x hr(p;) = cost(p;) + cost(p;) x hr(p;)
= cost(p;) + cost(pilpi) = cost(p;) + cost(pilpi)
= cost(p;) + cost(pilp;) < cost(p;) + cost(pilp:)
= Pi = pi
Totality

Given any two paths p;, p; € P, we know that cost(p;) € R*, cost(p;) € RY,
hr(p;) € RY, hr(p;) € R*. Therefore, we have:

cost(p;) + cost(p;) x hr(p;)) € R
= cost(p;) + cost(p;|p;) € R (4-2)

cost(pj) + cost(p;) x hr(p)) € RF
= cost(p;) + cost(p;|p;) € R 43)

cost(pi)+cost(pj|pi) < cost(pj)+cost(pi\pj) or
4.2) A -
= {cost(p]-wcost(papj) < cost(py) + cost(pylp)
. )P =pj or
pj = pi

Transitivity

Given three paths p;, pj, px € P, we suppose that: p; < p; A p; < py, and we
need to prove that p; =< py.
To make the proof easy to follow we note the following:

cost(p;) = a x
cost(py) = b hr(py) =y
cost(p) =c  hr(py) =z

where a,b,c,x,y,z€ R"
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We therefore have the following:

pi 2 pj
= cost(p;) + cost(pjlp;) < cost(p;) + cost(pilp;)
= cost(p;) + cost(pj) X hr(p;) < cost(pj) + cost(p;) x hr(pj)
= a+bx < b+ay
= b—bx+ay—a > 0

— b1 %) +aly—1) > 0 (4.4

Pj = Pk
== cost(p;) + cost(pilp;) < cost(pi) + cost(pjlpi)
== cost(p;) + cost(py) x hr(p;) < cost(pi) + cost(p;) x hr(pk)
=b+cy < c+bz
=c—cy+bz—b >0
=c(1-y)+b(z—1) = 0 (4-5)

Given (4.4) and (4.5), we need to prove that

pi = Pk
== cost(p;) + cost(plp;) < cost(px) + cost(pi|px)

—s cost(p;) + cost(py) x hr(pi) < cost(py) + cost(pi) x hr(py)
—a+cx < c+az (4.6)

Before we give the proof, we derive the following.

y<1 = a@y-1) <0
= b(1l-x) >0 by (4-4)
= 1—-x2>0 forb #0
= x <1

x>1 = b(l-x) <0
= aly—-1) >0 by (4.4)
= y—-12>0 fora #0
= y2>1
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Using a similar proof, we can conclude the same about y and z. We
therefore have derived the following:

y<1l=x<1 forb #0 (4.7)
x>1=y>1 fora #0 (4-8)

<1=y< forc #0 (4-9)
y>1=z> forb #0 (4.10)

We now prove that holds if we have x <1 < z. That is:

xr <1<z = (4.11)
We have
xr <1 = x—1<0
= c(x—1) <0
z>1 = z—1 >0
= a(z—-1) >0

|
a
=

|
o
_
N

|
x

I

[
+
3]
=

Following is the proof of transitivity. The proof is derived by considering
several cases.

z—1
y—1

well-defined and non-negative, i.e. y # 1 and ((x <lAy<1)V(x>

Case 1: We first examine the case in which the fractions and %%; are

1Ay > 1)) and ((y <1Az<1)V(y>1Az> 1)) We can therefore
multiply the left-hand-side and right-hand side of the inequalities (4.4) and
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(4.5) with respectively % and %%; and add the resulting inequalities. We
then get:

;:1(17(1—36)—0-11@—1))+1:;<c(1—y)+b(z_1)) >0
= ﬂ(z—1)+b(1—X)(z—1)<yi1+liy>+c(1—x) >0

= a(z—1)4+c(1—-x) >0
az—a+c—cx > 0
a+cx < c+az

= (1.9

We have proved that transitivity holds when % and %%x are well-defined

and non negative. It remains to consider the situationys in which either
or both of % and %%; are ill-defined or negative, which consist of the
following cases:

e Case2:y=1

e Case3:x<1Ay>1

e Caseg:x>1 ANy<l1

e Case5: y<1 Az>1

e Caseb6:y>1 AN z<1

We prove each of the above cases separately. We assume that a # 0, b # 0,

c#0.

Casez2:y =1
y=1=x<1<z by (1.7), (4.10)
— (@.9) by (.11)
Case:x <1 Ay=>1
<1<y =x <1<z by (4.10)
= (4.9 by (4.11)

Caseg: x> 1Ay <1
y<1<x cannot be true by (4.8)

Cases:y <1 Az2>1

y<1<z =x<1<z by (4.7)
— @@ by G50
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Case6:y>1 AN z<1
z<1<y  cannot be true by (4.9)
Assuming thata # 0, b # 0, ¢ # 0, we have proven that transitivity also

holds when % and %%x are ill-defined or negative. Therefore, we still
have to prove it holds for the following cases:

e Case7:a=0
e Case8:b=0
e Caseg:c=0
Case7:a=0
a=0 = x=0 by Notef4.3.1]
= a+cx=0
— a+cx<c since c € R™
— a+cx<c+Haz since az = 0
= (4.6
Case 8: b =0
b=0 = y=0 by Note[4.3.1]
= b4ay=0
= a+bx<0 by (1.4)
= a<0 since bx = 0
= 4=0 sincea € R
= (4.6) Same as Case 7
Caseg:c=0
c=0 = z=0 by (3.1
= cc+bz=0
= b+cy<0 by (4.5)
= b<O0 since cy = 0
= b=0 sinceb € R"
= (4.6 Same as Case 8

By this, we have covered all possible cases and therefore have proven that
transitivity holds for the relation <.

We have proven that < satisfies reflexivity, totality, and transitivity. There-
fore, the claim in Lemma [4.3.5 holds. O
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Note about Comparing a Path with its Subpath

Given a set S of paths explored during chain sampling, the inequality con-

dition used in Algorithm [7] (line[2) compares pairs of paths in S to identify

the superior path in the set. We restate the used inequality condition here:
cost(p;) + cost(py|p) < cost(p;) + cost(pilp;)

The above comparison checks if the execution of path p; followed by the

execution of path p; is cheaper than executing p; and then p;.

Given two paths p and p’ where p’ is an extension of p (i.e. p’ = pU
{e1,€2,...,en}), we note that applying the above comparison to the pair
(p,p') does not make much sense, since executing p’ consists of first execut-
ing p itself. Therefore, to check which of the two paths is superior to the
other, we compare them with all other non-subpath paths. Given the set S
of explored paths, the to be used inequality condition is the following;:

p = p' = cost(p) + cost(p;lp) < cost(p") + cost(p;|p") (4.12)
VpiES|pidp Api gy

/
where: pPESAPES
pcp vpcCp

The above formula translates into the following: given two paths p and p’
such that one is a subpath of the other, path p is superior to p’ if for every
explored path p; in S, the execution of p followed by the execution of p; is
cheaper than executing p’ and then p;.

We modify Algorithm [7] to take into account the above note. The new
SUPERIORPATH function is given in Algorithm [§| Given a path p;, the al-
gorithm creates two lists of paths: the list subpaths which includes all paths
that are subpaths of p; or that contain p; (line[g), and the list not_subpaths
which includes all paths that are not subpaths of p; and that do not contain
pi (line[5). In other words,

pj € subpaths = p; Cp; V p; Cpj
pj € not_subpaths = p; € pi N\ pi € p;

The algorithm first checks if p; is superior to all paths in the list not_subpaths
using the same inequality condition presented in Algorithm [7](line|6). If p;
proves to be superior, the algorithm proceeds by comparing p; to all paths
in the list subpaths using the newly introduced formula (line[7). The
path p; is returned for execution if it proves to be also superior to all paths
in the list subpaths.

To prove that there exists at least one superior path in the list subpaths,
we need to extend Lemma to this special case. This proof has not
been conducted yet and is left for future investigation.



Chain Sampling

Algorithm 8: SUPERTIORPATH

INPUT : Path List all_paths

// all_paths = list of all path segments that have been
explored during chain sampling

outpruT: Path p

1 Path List subpaths ; // Given a path p;, the list includes all
paths that are subpaths of p; or that contain p;

2 Path List not_subpaths ; // Given a path p;, the list includes
all paths that are not subpaths of p; and that do not
contain p;

3 FOREACH Path p; € all_paths po
4 | subpaths = {p; € all_paths | p; C p;Vp; Cp};
5 not_subpaths = all_paths \ subpaths;

6 IF cost(p;) + cost(pj|p;) < cost(p;) + cost(pi|p;) ¥ p; € not_subpaths

THEN
. 1F cost(p;) + cost(py|pi) < cost(pl) + cost (py|p}) ¥ px €
not_subpaths A V p} € subpaths THEN
8 RETURN p; ; // Path p; is superior to all the other

paths in the list all_paths, therefore p; is
returned for execution.

4.3.5 The Stopping Condition

Instead of exploring all the path segments in the join graph to decide
upon the superior path, chain sampling uses a stopping condition that
guarantees an early detection of the superior path and a safe halt of the
chain sampling process. The stopping condition, initiated after each chain
sampling iteration, detects the existence of an absolutely superior path
which is safely returned for execution and which is guaranteed to be
superior to any other path that might be explored if chain sampling is not
stopped and allowed to progress.

The STorPINGCONDITION function is given in Algorithm [g] It takes as
input two lists of paths new_paths and all_paths. The list new_paths contains
all path segments that have been created during the current chain sampling
iteration, while the list all_paths contain all path segments that have been
explored so far. The stopping condition compares in a pairwise fashion
every path in new_paths to all the paths in all_paths to check if one path in
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Algorithm 9: STOPPINGCONDITION

INPUT : Path List new_paths, Path List all_paths

// new_paths = list of path segments that have been
created during the current chain sampling iteration,
all_paths = list of all path segments that have been
explored so far (including the omes in new_paths)

OUTPUT: Path p

1 FOREACH Path p; € new_paths po

2 | 1F cost(p;) + cost(pj|pi) < cost(p;) V p; € all_paths | i # j THEN

3 RETURN p; ; // Path p; is absolutely superior to all
the other paths in the list all_paths, therefore p; is
returned for execution.

4 RETURN NULL;

new_paths is absolutely superior to all other paths and should therefore be
returned for execution.

Given a path p; in the input list new_paths, the SToPPINGCONDITION
checks if p; is absolutely superior to all the other explored paths by com-
paring p; to every other path p; in all_paths using the following inequality:

cost(p;) + cost(plpi) < cost(p;) (4.13)
-4 | S——

®

(@ : execution cost of p;
where: ¢ (2) : execution cost of p; once p; is executed
(3 : execution cost of p;

If there exists a path p; which satisfies the above inequality for all other
paths p; € all_paths, then path p; is absolutely superior and is returned
for execution (lines [1f3). If none of the paths in new_paths satisfy the
inequality, no path is returned for execution (line[g), and therefore chain
sampling will initiate a new exploration iteration.

The idea behind inequality is the following: given a path p; €
new_paths, if the execution of p; followed by the execution of any other
path p; in all_paths is cheaper than executing p; alone, then p; is absolutely
superior and chain sampling can be safely terminated returning p; for
execution. For example, if cost(p;), cost(p;), and hr(p;) are estimated to be
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equal to respectively 500, 1200 and 0.2, then we have the following:

cost(pjlpi) = cost(pj) x hr(p;)
1200 x 0.2
240

cost(p;) + cost(p;lp;) = 500 + 240
= 740
< cost(p;)

It may seem like a large number of path comparisons is performed, but a
path p; which fails to be absolutely superior to any other path is directly
disregarded by the algorithm, and the next path in the list new_paths is
then checked for absolute superiority. Moreover, the comparisons can
be implemented in an efficient manner (e.g. by sorting the paths), hence
reducing the amount of time spent by the StorPINGCONDITION function.

Definition 4.3.6. Given two paths p; and p;, we define the absolute superi-
ority relation <= as follows:

pi 3=p; = cost(pi) + cost(pjlp;) < cost(p;)
Therefore, given a set of paths P, we say that the path p; is absolutely
superior in P if and only p; <=p; Vp; € P |i # .
Lemma 4.3.7. We claim the following:
PiZ=p; = P3P
Proof. Given two paths p; and p;, we have the following:

pi 2=2p; = cost(p;) + cost(pj|p;) < cost(p;)
= cost(p;) + cost(p;|p;) < cost(p;) + cost(pi|p;)
since cost(p;|p;) > 0

pi 2 pj
O
We now prove that if a path p; is found by the stopping condition to be

absolutely superior to all other paths explored so far by chain sampling,
then it is safe to halt chain sampling and return p; for execution.

97



4. ROX: Run-time Optimization of XQueries

We first prove that if chain sampling is not stopped, and all paths p;
(pj # pi) are explored further, then no path superior to p; would be found,
and p; will still be the best path to execute among all the newly explored
paths.

Lemma 4.3.8. Given a set of paths P, and a path p; € P that is absolutely superior
in P, we claim that if the chain sampling process would not be halted and would
further explore every path p; (p; € P | pj # p;), none of the newly explored paths
will be superior to p;.

Proof. Given a set of paths P, and a path p; € P that is absolutely superior
in P, we have the following:

pi 2=2pj YV pjEP|i#]
= pi3p VpEP|i#] by Lemma [4.3.7]

To prove the above lemma, we suppose that the path p; is not returned for
execution and that the next chain sampling iteration is initiated, during
which a path p; from the set of paths P (p; # p;) is extended with a newly
sampled edge e, creating a new path p’ (p' = p;U {e}). We consider the
best possible case in which the cost of p’ has the lowest possible value. The
lowest cost that p’ can have is when the selectivity of e in combination with
the edges in p; is the highest possible, which is the case when the hit ratio
hr returned by the sampling operation of ¢ is equal to 0. Then, we have the

following:
hr(p') = hr(pj) x hr
=0
cost(p’) = cost(p;) + hr(p') x card(v)
— cost(p) (4:14)
where v is the starting vertex of the chain sampling
exploration.

We now need to prove that, even in such an optimal situation, the path p;
is still superior to the newly created path p/, thatis p; < p'.
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We have the following;:

cost(py) + cost(p/ ) = cost(py) + cost(p') x hr(py)

by Definition [4.3.2]
cost(py) + cost(py) < hr(p) by
cost(py) + cost(g )

by Definition [4.3.2]
< COSt(P]’) since p; <= pj
< cost(p)) by

= p == 7
=p =7 by Lemmal4.3.7]

We have proven that in case chain sampling is not halted after an absolutely
superior path p; is found, and a path p; (p; # p;) is explored further creating
a new path p/, then p’ cannot be superior to p; even in the best possible
situation in which the newly sampled edge of p’ has the highest selectivity
(hr = 0). O

In the above lemma and proof, we have considered the case in which
the path p; extended during the chain sampling iteration is different than
the absolutely superior path p;. In the following, we investigate whether
extending path p; itself with a highly selective edge would make the
termination of the chain sampling process unsafe.

Lemma 4.3.9. Given a set of paths P, and a path p; € P that is absolutely superior
in P, we claim that it is safe to stop the chain sampling process even if, in the next
chain sampling iteration, path p; would have been extended with a highly selective
edge.

Proof. Given a set of paths P, and a path p; € P that is absolutely superior
in P, we suppose that chain sampling is not halted, and that p; is extended
with a newly sampled, highly selective edge e, creating a new path p’

(¢’ = piU{e)).
Using a similar proof as in (4.14), we can derive the following:

hr(p)) = 0
cost(p') = cost(p;) (4.15)

99



4. ROX: Run-time Optimization of XQueries

100

We now prove that p’ is in fact superior to p;, that is p’ < p;:

cost(p') + cost(pilp)) = cost(p') + cost(p;) x hr(p")
by Definition [4.3.2]
= cost(p) since hr(p') =0
— cost(py) by
< cost(p;) + cost(p'|p;)

since cost(p'|p;) € RT

PN

=y pi

We have proven that in case the absolutely superior path p; is itself extended
with a newly sampled, highly selective edge e (h# = 0), then the newly
created path p’ is superior to p;. This means that the path p’ should be
returned for execution instead of p;. The next question to ask is whether
stopping chain sampling and returning p; for execution without detecting
the existence of the better path p’, would result in a final plan P different
than the final plan P’ that would have been generated if p’ would have
been returned for execution. If it can be proven that the two plans P and
P’ are the same, then we can conclude that it is safe to stop chain sampling
and to return p; for execution.

We know that p’ = p; U {e}, which means that executing p’ implies
the execution of first the path p; followed by the execution of the edge e.
Therefore, the two plans P and P’ are the same if after returning p; for
execution, and executing all edges in p;, the subsequent optimization step
of ROX would detect that the edge e is superior to all other paths in the
join graph and would return e for execution.

Let us suppose that chain sampling is halted and that the path p; is
returned for execution. After executing all the joins in p;, the knowledge in
the join graph is updated, therefore the sample table of the vertices of every
edge in p; is updated. Using as input the new sample tables, the outgoing
unexecuted edges of each vertex in p; are re-sampled to re-estimate their
weights. Among all the re-sampled edges is the edge e, the weight of
which will be estimated to be 0, due to the highly selective correlation
that exists between the joined vertices in p; and the vertices of the edge e.
When the subsequent optimization phase starts, the edge e is recognized
to be the edge with the smallest weight, and a new chain sampling process
is initiated to explore all the edges around e. We suppose that the path
pr = {e} is created during the first chain sampling iteration. We know
that hr(e) = 0, therefore hr(px) = 0 and cost(px) = 0. Subsequently, the
stopping condition inequality will hold when comparing py with any
other explored path segment, proving that py is absolutely superior to all
the other explored paths, and therefore py is returned for execution.

We have proven that the execution of p; will definitely be followed by
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the execution of ¢, which is similar to detecting the superior path p’ and
returning it for execution. We therefore conclude that it is safe to stop
chain sampling and to return the path p; for execution. O

We have proven that if the stopping condition has found an absolutely
superior path p;, then chain sampling can be safely terminated returning
pi for execution. In fact, if a subsequent chain sampling iteration would
detect a path segment that is highly selective generating an output of size
0, then p; will still be superior to the detected path, except for the situation
where the newly detected path is an extension of p;. If the latter is the case,
then it is still safe to stop chain sampling, since after the execution of p; a
new optimization phase will start using more accurate up-to-date samples
with which the highly selective edge will be discovered and then returned
for execution.

Note about Comparing a Path with its Subpath

Given two sets of paths new_paths and all_paths explored during chain
sampling, the inequality condition used in Algorithm [g| (line [2) compares
a path p; in new_paths to every other path in all_paths to determine if p; is
absolutely superior such that chain sampling can be safely terminated, and
pi can be returned for execution. We restate the used inequality condition
here:
cost(pi) + cost(plps) < cost(p;)

The above comparison checks if the execution of path p; followed by the
execution of path p; is cheaper than executing p; alone.

Given two paths p and p’ where p’ is an extension of p (ie. p' = pU
{e1,ea,...,en}), we note that applying the above comparison to check if p’
is absolutely superior to p does not make much sense, since executing p’
consists of first executing p itself. Therefore, the stopping condition should
not compare a path with its subpath using the above inequality condition.
In the following, we present the new STorPPINGCONDITION function and
then explain the reasoning behind it.

We modify Algorithm [g] to take into account the above note. The new
STorPINGCONDITION function is given in Algorithm Given a path p;,
the algorithm creates two lists of paths: the list subpaths which includes
all paths that are subpaths of p; or that contain p; (line [4), and the list
not_subpaths which includes all paths that are not subpaths of p; and that
do not contain p; (line5). In other words,

pj € subpaths = p; Cp; V p; Cpj
pj € not_subpaths = p;  p; N pi € pj
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Algorithm 10: STOPPINGCONDITION

INPUT : Path List new_paths, Path List all_paths

// new_paths = list of path segments that have been
created during the current chain sampling iteration,
all_paths = list of all path segments that have been
explored so far (including the omes in new_paths)

OUTPUT: Path p

1 Path List subpaths ; // Given a path p;, the list includes all
paths in all_paths that are subpaths of p; or that contain p;

2 Path List not_subpaths ; // Given a path p;, the list includes
all paths in all_paths that are not subpaths of p; and that
do not contain p;

3 FOREACH Path p; € new_paths Do
4 | subpaths = {p; € all_paths | p; C p;Vp; Cp1};
5 not_subpaths = all_paths \ subpaths;

6 | TFcost(p;) + cost(pj|p;) < cost(p;) ¥V pj € not_subpaths THEN

7 ¥ cost(p;) + cost(px|pi) < cost(p}) + cost(pxlp;) ¥ pr €
not_subpaths A V p} € subpaths THEN
8 RETURN p; ; // Path p; is superior to all the other

paths in the list all_paths, therefore p; is
returned for execution.

The algorithm first checks if p; is absolutely superior to all paths in the list
not_subpaths using the same inequality condition presented in Algorithm [g]
(line6). If p; proves to be absolutely superior, the new algorithm proceeds
by comparing p; to all paths in the list subpaths using inequality
described in section (line[7). The path p; is returned for execution if
it proves to be superior to all paths in subpaths.

We now explain the reasoning behind the new STorPINGCONDITION
function. In line [6] of Algorithm [g} the function checks if p; is absolutely
superior to all paths in not_subpaths. If it is the case, then p; will remain
the superior path even if the next chain sampling iteration extends any
path p; € not_subpaths with a highly selective edge generating an output
of size 0. To safely stop chain sampling and return p; for execution, we
still need to make sure that p; is also superior to all paths in subpaths. This
is done with the comparison at line [z} We note that there is not need to
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Figure 4.8 Join graph in which two path segments p; and p; are sampled during the
chain sampling process using the vertex v as the starting point of exploration. We have
pi = {(v,a1),(ay,a2)} and pj = {(v,b1), (b1,b2), (by,b3)}. The shown table
corresponds to the sample table SMPL(U) used as input to the sampling operations of the
joins in p; and p;.

check the absolute superiority of p; to all paths in subpaths before safely
returning it for execution. It is, in fact, sufficient to prove it is superior.
This is due to the fact that all paths in the list subpaths will not be extended
during any subsequent chain sampling iteration (refer back to Algorithm
guaranteeing that p; will remain the superior path in the next iterations.

4.3.6 Note about the Estimation Method of cost(p;|p;)

We consider the join graph shown in Figure in which two paths
pi and p; are sampled during a chain sampling process using v as the
starting vertex of exploration. We have p; = {(v,a1), (a1,a2)} and p; =
{(v,b1), (b1,b2), (b, b3)}. The figure shows SMPL(v) the sample table of
the vertex v used as input to the sampling operations of the paths p;
and p;. If hr(p;) = 0.5, then half of the tuples in the sample table of v
do not match the joins in p; and are filtered out. If half of the tuples in
SMPL(v) that have been filtered out by p; match the joins in p;, then the
intermediate result generated by p; is also reduced by half and therefore
cost(pj|p;) = cost(pj) x 0.5. This estimation, presented in Definition is
accurate if the hit ratio hir(p;) is uniform among all the tuples in v. We give
an example in which the above assumption does not hold.

Example 4.3.10. We reconsider the join graph of Figure Figure
shows the sets S; and Sy, where the first contains the v tuples that match
path p;, while the latter consists of the v tuples that match the edge (v, b;).
We conclude from the figure that hr(p;) = 0.5, and hence cost(p;|p;) =
cost(pj) x 0.5. However, none of the v nodes in S; will match the edge
(v,b1), and therefore the cost of executing p; using as input the output
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S1: tuples of v that Sy: Tuples of v that
match the path p; match the edge (v, 1)
id id
01 (&)
01 02
U3 U4
U3 U4

Figure 4.9 Given the join graph and the chain sampled paths p; and p; of Figure the
set 51 contains the v tuples that match path p;, and the set Sy consists of the U tuples that
match the edge (v, by).

returned by p; is 0 (cost(p;|p;) = 0), which is different from the derived
estimation.

We can derive a better estimation of cost(p;|p;) by intersecting the two
sets 51 and Sy and noting the fraction f of the tuples in S, that are in the
intersection results. The value of cost(p;|p;) can then be estimated to be
equal to cost(p;) x f.

It is also possible to get the actual value of cost(pj|p;). One method is to
re-sample the edges in p; using S; as input, and summing up the size
of generated intermediate results. Another more efficient method that
requires no join operations is to intersect the set 5; with each of the sets S,
S3, and S4 and noting down the fraction of tuples that end up in the result.
The sets Sz and Sy are the sets of v tuples that match respectively the two
paths {(v,b1), (b1,b2)} and {(v,b1), (b1, b2),(b1,b3)}. These intersection
operations take as input two sample sets, the size of which is kept small.
Subsequently, they can be executed at a cheap cost, especially if the input
sample sets are already sorted. We therefore think that it is possible to use
the above method to derive the actual cost cost(p;|p;) while keeping the
cost of chain sampling limited.

In the prototype of ROX, we estimate the value of cost(p;|p;) as shown
in Definition To derive a better estimation, one of the above two
methods could be used. Although the method we use introduces a risk of
computing wrong estimations, the experiments show that ROX achieves a
robust performance while making good optimization decisions.

4.4 Chain Sampling Implementation

The chain sampling process implemented in the ROX prototype differs
subtly from the one described in Section The chain sampling that has
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been presented earlier in this chapter guarantees that the superior path in
the explored region of the graph is detected and returned for execution.
The chain sampling variant implemented in the ROX prototype does not
give the same guarantee. The reason this difference exists arises from the
fact that the variant explained in this chapter was detected at an advanced
stage, only after the prototype has been implemented and the experiments
completed. We therefore stress that the experimental results presented
in the next chapter, which already prove the robustness and superiority
of ROX, can be improved if the chain sampling shown in Algorithm |5|is
adopted. In this section, we examine the differences between the theoretical
and the implemented chain sampling process. We then show than the
implemented variant might, in some situations, miss picking the best path
to execute.

4.4.1 Chain Sampling in the Prototype

The implemented chain sampling variant differs from the theoretical one
in the following point: When a path p’ is created by extending a path p with a
new edge e (p' = p U {e}), then p is removed from the set of explored paths and is
therefore not considered in the comparisons performed by the stopping condition
or the SUPERIORPATH function. In other words, a subpath p which is already
included in a longer path p’ is disregarded by the chain sampling process,
and only p’ is included in the path comparison performed by the stopping
condition and possibly the SUPERIORPATH function.

To explain the chain sampling process implemented in the ROX proto-
type and to put in focus the differences with the theoretical chain sampling,

we reuse the join graph of Example

Example 4.4.1. Figure illustrates the three iterations of the implemen-
ted chain sampling. The edge with the smallest weight is (v, v5) and the
starting point of exploration is chosen to be the vertex vp. The edges in
Figure Figure and Figure are labeled with the path id
to which they belong, and the arrows denote the direction of sampling
(i.e. the left and right operands of the sampling operation). Figure
enumerates the edges sampled at each iteration, and illustrates the created
and disregarded paths.

Iteration 1 (Figure [4.10b): This iteration is identical to that of the first
iteration of the theoretical chain sampling, and results in the creation of
three paths p1, p2 and p3.

Iteration 2 (Figure [g.10): The second iteration samples the next unex-
ecuted edges branching from the start vertex of each of the three defined
paths. Similar to the theoretical chain sampling process, three new paths
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a Join graph in which we suppose (07, Us) to be
the edge with the smallest weight. We choose
the vertex v; to be the starting point of the chain
sampling exploration.
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¢ The second iteration of chain sampling. Path
P1 has no unexecuted edge to sample. A new
path p4 is created by extending path p; with the
newly sampled edge (v3, v4). Two unexecuted
edges are branching from ps3, therefore two new

P1 P2
01 (%] U3 ()
»\
Us Vg —+1 Ug
07 Ug

b The first iteration of chain sampling. The
starting sample chosen from v; is used as input
to sample all the outgoing unexecuted edges of
0. This defines three path segments in the join
graph.

141 P4 P4
01 U2 (%] U4

P5,P7\
Ps

U5 ——> U — 11 U9

o\
p7

U7 —— Ug

d The third iteration of chain sampling. Only one
new path py is created by extending pe with the
sampled edge (07, vg). Path pg is removed
from the list of explored paths and is not included
in the next comparisons.

paths p5 and pg are created, each one extending
p3 with one of the branching edges. Paths p», p3
are removed from the set of explored paths and

they are not included in the next comparisons.

Figure 4.10 lllustration of the implemented chain sampling. The starting point of exploration
is the edge with the smallest weight which we assume to be (02,05). The labels on the
edges denote the path id(s) to which the edges belong, and the arrows indicate the sampling
direction (i.e. the left and right operands of the sampling operation). Any explored path
p included in a longer path p/ is disregarded by the chain sampling process, and will not
be included in the path comparison performed by the stopping condition and possibly the
SUPERIORPATH function.

are created; however, in this case the two extended paths p, and p3 are
disregarded and removed from the list of explored paths.

Iteration 3 (Figure [4.10d): In the third iteration, only one new path p;
is created by extending the path ps with the newly sampled edge (vy, vg).
Path pe will no more be considered in the path comparisons performed by
the stopping condition or the SUPERIORPATH function.
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Sampled Edges

(v2,01) - (v2,03) - (v2,05)

Iteration 1 Defined Paths

p1 = {(v2,01)}
p2 = {(v2,v3)}
p3 = {(v2,05)}

Disregarded Paths

Sampled Edges (v3,04) - (v5,06) - (vs5,07)
pa = {(v2,v3), (v3,04) }
Iteration 2 Defined Paths ps = {(v2,v5), (vs5,06) }

ps = {(v2,05), (vs,v7) }

Disregarded Paths

P2, P3

Sampled Edges

(v7,v8)

Iteration 3 Defined Paths p7 = {(v2,v5), (vs,v7), (v7,v8) }

Disregarded Paths | pg

Figure 4.11 The sampled edges and definition of paths at every iteration of the chain
sampling process illustrated in Figure[4.70] At every iteration, new paths are created and
some paths are disregarded.

Theoretical Implemented
new_paths all_paths all_paths
Iteration 1| {p1,p2,p3} {p1,p2,p3} {p1,p2,p3}
Iteration 2 | {pa,ps,pe} {p1,p2,p3,P4,P5,P6} {p1, P4, P56}
Iteration 3 {p7} {p1, P2, P3P, P56, 7} | {P1,paps p7}

Figure 4.12 The paths that are checked for superiority by the stopping condition and
possibly the SUPERIORPATH function in the two variants of chain sampling. In the theoretical
version, newly created paths are compared against all the paths explored so far. In the
implemented version, only the newly created and non-disregarded paths are checked against
each other.

Figure compares the theoretical and implemented chain sampling
processes by listing the paths that are checked for superiority by the
stopping condition and possibly the SupERIORPATH function in the two
chain sampling variants. In the theoretical chain sampling, new paths
are compared against all paths, while in the implemented chain sampling
newly created paths and non disregarded paths are checked against each
other.

There are two differences between the algorithm of the theoretical chain
sampling presented in Algorithm [5| and that of the implemented chain
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sampling. We present the differences here:

1. Difference 1: The following two lines are added to Algorithm
before line
IF |edges™ (v) \ p| > 0 THEN
all_paths REMOVE(p)
Every path that has at least one unexecuted to-be-explored edge
branching from its start vertex v will be removed from the list all_paths
before being extended with the newly sampled edges.

2. Difference 2: Line [23]in Algorithm [5is replaced by the following

line:
p < StoPPINGCONDITION (all_paths, all_paths)

In the theoretical chain sampling algorithm, the superiority of only
the newly created paths is checked, by comparing them against all
the paths explored so far. The reason only new paths are checked for
superiority is that old paths have already been checked in previous
iterations and they failed to prove superior. In the implemented chain
sampling algorithm, the stopping condition compares all the paths,
including the old paths, against each other. Since at every iteration
some paths are removed from the list all_paths, then a chance exists
that an old path, which was inferior to one of the disregarded paths,
proves now to be absolutely superior to the paths in the list all_paths.

The fact that some paths are not included in the stopping condition com-
parison of the implemented chain sampling might result in suboptimal
paths picked for execution. In the next section, we investigate the cases in
which the implemented variant of chain sampling might miss picking the
best plan for execution.

Suboptimality of the Implemented Chain Sampling

In this section, we show that the implemented chain sampling is sub-
optimal, and also identify the situation in which suboptimality might
occur. For this purpose, we categorize all the paths explored during chain
sampling in two lists:
1. removed_paths: all paths disregarded during the chain sampling pro-
cess.

2. all_paths: all paths included in the checks for superiority and abso-
lute superiority performed by respectively the SUPERIORPATH and
StorPINGCONDITION functions.

We need to identify the situation in which one of the paths disregarded
during the chain sampling process and hence not included in the compar-
isons performed by the SToPPINGCONDITION and SUPERIORPATH functions
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is better to execute than the path picked for execution by one of the two
functions.

Let path p € removed_paths be superior to all paths in the list removed_paths:
p = pi V p; € removed_paths. We suppose that the stopping condition or Su-
PERIORPATH function has detected that the path p’ is absolutely superior or
superior to all paths in all_paths. We therefore have: p’ < p; V p; € all_paths.

If p < p' holds, then p < p; V p; € all_paths is also true by transitivity.
This means that p is superior to all paths in the list removed_paths U all_paths,
and therefore p should be returned for execution instead of p’.

We have shown that the implemented chain sampling is suboptimal and
might miss choosing the best path for execution. The suboptimality occurs
when the disregarded path superior to all other disregarded paths is also
superior to the path returned for execution by either the stopping condition
or the SUPERIORPATH function. Although this puts the ROX prototype
at a disadvantage when conducting the experiments, we observed that
the obtained experimental results were already satisfying, proving the
robustness and superiority of ROX.

4.5 The Power of the Run-time Optimizer

In this section we show the power of our proposed run-time optimizer
using an example XQuery Q. We proceed as follows. We first present
the decisions made by ROX when optimizing the query Q, showing the
attitude of ROX towards the correlation existing between the queried data.
Then, by changing the value of a predicate condition in Q, a different range
of XML nodes is selected, and subsequently the impact of the correlation
existing among the queried nodes on the cardinality of intermediates is
modified. We then show how the optimization of the new variant of Q is
addressed by ROX. The reaction of ROX to the change in the correlation
illustrates the robustness of ROX and its ability to detect the existing
correlations in a query, and to exploit them to generate a corresponding
good execution plan.

The query Q corresponds to the following XQuery which queries the
document xmark.xml generated from the XMark benchmark []:

let $d := doc(‘‘xmark.xml’’)
for $o in $d//open_auction[.//current/text() > 145],
$p in $d//person[.//province],
$i in $d//item[./quantity = 1]
where $o//bidder//personref/@person = $p/0@id and
$0//itemref/@item = $c/@id
return $o
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The query Q searches for all open auctions in the document for which the
current price of the item in the bid is greater than 145, the quantity of the
item in the bid is equal to 1, and information about the province of at least
one of the bidders participating in the bid is available.

The new variant of Q is named Q'. The query Q' is identical to Q except
for the predicate condition expressed on the current/text () node. The
query Q' is presented below:

let $d := doc(‘“‘xmark.xml’’)

for $o in $d//open_auction[.//current/text() < 125],
$p in $d//personl.//province],
$i in $d//item[./quantity = 1]

where $o//bidder//personref/@person = $p/@id and
$o//itemref/@item = $c/0Qid

return $o

In query Q, we select all the open_auction nodes with a current price
> 145. In Q', we select those having a current price < 125. We realize
that the higher the price of the item presented in the opened auction, the
larger the number of bidders that have bid for the item, and vice versa.
In @/, the selected items have a lower price than those in Q, hence the
numbers of selected bidder nodes is smaller than those selected by the
query Q. Therefore, there exists a correlation between the value of the
current node and the number of bidder nodes participating in the bid.
In fact this correlation spans over four different nodes: text() with a
predicate condition, current, open_auction, and bidder. Therefore, our
question is the following: would ROX be able to detect the correlation
between the current price of an item and the number of participating
bidders even though the correlation crosses over four different XML nodes?
In the following, we examine the decisions made by ROX while optimizing
the two queries Q and Q' to find out if ROX is capable of detecting the
correlation between the four nodes, and of exploiting it to generate good
execution plans.

Optimization of Q

Figure depicts the join graph G corresponding to the query Q. Next,
we illustrate some of the steps made by ROX while optimizing the input
graph G.

The first phase of the ROX algorithm initializes the join graph G, i.e.
knowledge about the vertices and edges in G is collected. First, using
the available indexes, the cardinality of the XML nodes corresponding to
each vertex is estimated, and a table containing a sample of these nodes is
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Figure 4.13 Join graph of the XQuery Q

materialized. Figure lists the vertices and their estimated cardinality.
Given the available indexes implemented in the ROX prototype, knowledge
about some vertices cannot be efficiently acquired. Next the weights of the
edges in the graph are computed. It is possible to compute the weight of
only those edges that have at least one vertex, the sample table of which
has been materialized during the previous step. Figure shows the join
graph updated with the edges’” weight represented as a number label on
some of the edges. Note that the edges connected to the vertex representing
the root of the document are unweighted. In fact, the XPath axis of these
edges is a descendant step, therefore the edges do not need to be executed
and can be safely ignored during the optimization process without any
risk of generating an erroneous result.

The second phase of ROX consists of alternating optimization based on
chain sampling and execution steps. The following steps are iterated:

1. Pick the edge e in G with the smallest weight.

2. If at least one of the vertices of ¢ has more than one outgoing unex-
ecuted edge, initiate the chain sampling process with e as the starting
point of exploration.

3. The path p found to be superior to the other paths is returned.
4. Execute p and update the knowledge in the join graph.

First Optimization and Execution Steps: The edge in G with the smallest
weight is (current, text() > 145). Since current has more than one
unexecuted edge, chain sampling is initiated using current as the start
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Vertex v card(v)
item 21750
quantity 43500
text() =1 42250
person 25500
province 6285
open_auction 12000
current 12000
bidder 59486
personref 59486
itemref 21750
text() > 145 -
@person -
@item -
@id (item) -

@id (person) -

Figure 4.14 The initialization phase of ROX. The estimated cardinality of XML nodes
corresponding to the vertices in the join graph G. Given the indexes available in the ROX
prototype, the cardinality of some of the vertices cannot be efficiently estimated.

vertex of the exploration. Figure [4.16]illustrates the chain sampling process.
The edges in the graph are labeled with the paths they belong to and the
arrows indicate the direction of the sampling operations. Note that the
chain sampling illustrated in this example corresponds to the implemented
variant described in Section [4.4] and not the theoretical one. Figure
gives a more detailed description of the chain sampling process. It lists
the created paths with their cost and hit ratio. It also enumerates the
paths checked for superiority by the stopping condition, and presents the
outcome of the comparison. During the first two chain sampling iterations,
no path satisfies the stopping condition inequality, while at the end of
the third iteration, p; proves to be superior and is returned for execution.
Figure illustrates the resulting join graph after the first execution
phase. Note that the weight of the edge (current, open_auction) is
recomputed using the up-to-date newly materialized results: the weight
of the edge is updated from the value 12000 to 6061. This means that it
is estimated that 6061 of the 12000 open_auction nodes in the document
have a current price greater than 145.

Second Optimization and Execution Steps: A second optimization phase
is started. The edge in G with the smallest weight is (open_auction,
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Figure 4.15 The join graph G showing the estimated weight of the edges (number labels
on the edges). An edge with two vertices, the sample tables of which are not materialized,
will initially stay unweighted. The edges connected to the vertex representing the root of
the document are also unweighted. In fact, the XPath axis of these edges is a descendant
step, therefore the edges do not need to be executed and can be safely ignored during the
optimization process without any risk of generating an erroneous result.

current). Since open_auction has more than one unexecuted edge, chain
sampling is initiated using open_auction as the start vertex of the ex-
ploration. After few iterations, the chain sampling process finds the
edge (open_auction, current) to be superior. Therefore, the edge is
executed and the weight of the two edges (open_auction, itemref) and
(open_auction, bidder) is updated. The new weight of each of the two
edges is respectively 6061 and 41897. We notice the following: although
the number of selected open_auction nodes is half the total number of
open_auction nodes in the document (6061 out of 12000), the estimated
cardinality of matching bidder nodes is more than half the total number of
bidder nodes in the XMark document (41897 out of 54480). This indicates
that the distribution of bidders among the different opened auctions is not
uniform, which is to be expected since the number of bidders participating
in a bid varies from item to item. Interestingly, ROX was capable of detect-
ing this non-uniform distribution by simply alternating sampling-based
optimization and execution steps.

Third Optimization and Execution Steps: It is in this step that we will
find out if ROX will detect and exploit the correlation existing in the
queried data. In the third optimization phase, the edge in G with the
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a The edges in the graph are labeled with the paths they belong to and the arrows indicate the direction of the
sampling operations.

Created paths PU cost 6120 hr 051
. P2 12000 1.0
Iteration 1
Compared paths p1, P2
Absolute superior path X
Created paths P3| cost 67800 hr 465
. P4 24000 1.0
Iteration 2
Compared paths P1,P3, P4
Absolute superior path X
s 123600 4.65
' . Created paths D cost 36000 hr 10
iteration 3
Compared paths P1,P5,Pe
Absolute superior path P

b The list of created paths with their cost and hit ratio properties, along with the list of paths checked for
superiority by the stopping condition and the outcome of the comparison.

Figure 4.16 The first optimization phase and its chain sampling process performed by
ROX.

smallest weight is (open_auction, itemref). Since open_auction has
more than one outgoing unexecuted edge and has a smaller cardinality
than itemref, then chain sampling is initiated using open_auction as the
start vertex of the exploration. Figure illustrates the chain sampling
process. The edges in the graph are labeled with the paths they belong
to and the arrows indicate the direction of the sampling operations. For
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Figure 4.17 The join graph G after the first execution phase. The edge (current,
open_auction) is executed and the weight of the outgoing edge of the vertex current
is updated using the newly materialized results. The circled number indicates the execution
order of the edge in the graph, and the arrow on the saw-shaped edge corresponds to the
execution direction.

illustration purposes, instead of assigning a new name to every created
path, we name a newly created path after the extended path it is created
from. In Figure the explored paths and their properties along with
the corresponding sampled edges are shown. The stopping condition is
checked for the two paths pj, p> at the end of every iteration, and fails
to be satisfied. Therefore, chain sampling proceeds until all edges in the
graph are sampled. Then, the SUPERIORPATH function is called and path p;
is returned for execution.

After the execution of all the operators in path p;, ROX proceeds with the
alternation of optimization and execution steps until the execution order
of all the edges in the join graph is determined. Figure shows the
resulting join graph after all the edges have been ordered and executed.

Optimization of Q’

The first two optimization and execution phases for the query Q' are
similar to those of query Q. This results in the execution of the two
edges (current, text()>125), (current, open_auction), and the re-
computation of the weight of the two edges (open_auction, itemref),
(open_auction, bidder) to the respective values 5079 and 14068. The
weight of the other edges is similar to the weights shown in Figure
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a The chain sampling process performed during the third optimization step of ROX. Instead of assigning a new
name to every created path, we, for illustration purposes, name a newly created path after the extended path it is
created from.

Path Sampled edge cost hr

iteration 1 p1 (open_auction, itemref) 6061 1.0
P2 (open_auction, bidder) 36729 6.06

iteration 2 P1 (itemref, Qitem) 12122 1.0
P2 (bidder, personref) 73458 | 6.06

iteration 3 P1 (@item, @id) 18183 1.0
P2 (personref, @person) 110187 | 6.06

iteration 4 p1 (@id, item) 24244 1.0
P2 (@person, @id) 146916 | 6.06

. . p1 (item, quantity) 30305 1.0
tteration 5 | (0id, person) 183645 | 6.06
. . p1 (quantity, text()=1) 35820 | 0.91
iteration 6 P2 (person,province) 190990 | 1.212

b The list of paths and the corresponding sampled edges at every iteration. The cost and hit ratio properties of
the paths are also shown.

Figure 4.18 The third exploration step of ROX while optimizing the query Q.

In the third optimization phase initiated by ROX, the edge with the
smallest weight is (open_auction, itemref). Since open_auction has
more than one outgoing unexecuted edge and has a smaller cardinality
than itemref, then chain sampling is also initiated using open_auction as
the start vertex of the exploration. Figure shows the join graph G’ of
Q' and the chain sampling process performed by the third optimization
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Figure 4.19 The join graph G after all the edges have been ordered and executed. The
circled numbers indicate the execution order of the edges in the graph, and the arrows
correspond to the execution direction.

phase. The edges in the graph are labeled with the paths they belong
to and the arrows indicate the direction of the sampling operations. For
illustration purposes, a newly created path is named after the extended
path it is created from. In Figure the explored paths and their
properties along with the corresponding sampled edges are shown. The
stopping condition is checked for the two paths p;, p2 at the end of every
iteration, and here also fails to be satisfied. When all edges are sampled,
the SUPERIORPATH function is called but now the path p; is returned for
execution. Therefore, in this case p, is chosen for execution instead of py,
and the edge (open_auction, itemref) which was found to be the edge
with the smallest weight is not executed: chain sampling climbed the hill
to discover a path that is superior and which should be executed first.
We draw the attention of the reader that the number of current and
open_auction nodes satisfying the predicate “> 145" is 6061, while the
number of those satisfying the condition “< 125” is 5079, which is not a
big difference. Although the difference in the cardinalities of current and
open_auction nodes is small, the difference in the number of bidder nodes
is big, going from 41897 in the “> 145" case to 14068 in the second case.
This correlation that spans the four nodes text () with predicate condition,
current, open_auction, and bidder is detected and exploited by ROX
generating the good execution plans. This kind of correlation is hard to
be detected by a traditional statistics-based optimizer. Although such an
optimizer can estimate the number of current and possibly open_auction
nodes satisfying the two different predicate conditions, a detection of the
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a The join graph G of Q’ and the chain sampling process performed during the third optimization step of ROX.
Instead of assigning a new name to every created path, we, for illustration purposes, name a newly created path
after the extended path it is created from.

Path Sampled edge cost hr
iteration 1 p1 (open_auction, itemref) | 5079 1.0
P2 (open_auction, bidder) 11021 | 2.17
iteration 2 p1 (itemref, @item) 10158 | 1.0
P2 (bidder, personref) 22042 | 2.17
iteration 3 p1 (@item, @id) 15237 | 1.0
P2 (personref, @person) 33063 | 2.17
iteration 4 p1 (@id, item) 20316 | 1.0
P2 (@person, @id) 44084 | 2.17
. . p1 (item, quantity) 25395 | 1.0
fteration 5 | ) (eid, person) 55105 | 2.17
. . p1 (quantity, text()=1) 30118 | 0.93
iteration 6 P2 (person,province) 57364 | 0.44

b The list of paths and the corresponding sampled edges at every iteration. The cost and hit ratio
properties of the paths are also shown.

Figure 4.20 The third exploration step of ROX while optimizing the query Q/.

correlation existing between the four nodes at compile time would require
a multi-dimensional histogram that summarizes the complex relation
existing among the nodes. Additionally, we stress that the optimizer
should decide before the query is submitted to build a histogram on these
specific attributes, and identifying which attributes to build a histogram
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Figure 4.21 The join graph G’ after all the edges have been ordered and executed. The
circled numbers indicate the execution order of the edges in the graph, and the arrows
correspond to the execution direction.

for without knowing the query load is a task that is far from easy. If the
correlation between the four nodes is missed, then the cardinality of the
XPath step join (open_auction, bidder) is miss-estimated resulting in
an order of execution that is not optimal.

After the execution of all the operators in path py, ROX proceeds with
the alternation of optimization and execution steps until the execution
order of all the edges in the join graph is determined. Figure shows
the resulting join graph after all the edges have been ordered and executed.
Note that the edges in path p, are not executed in the same sequential
order with which they were sampled during chain sampling. In fact, ROX
treats the path p, as a separate join graph, optimizes it, and executes
its edges in the most optimal execution order found. First the selective
edge (person, province) and its chain of operators are executed until
reaching the XPath step join (@person, personref) which is estimated
to have a large result size. Therefore, the step join is skipped, and the
more selective edge (open_auction, bidder) and its chain of operators
are executed until reaching the same step join again. The XPath step join
is then executed with a smaller input set. We also note that the execution
direction chosen by ROX for some of the edges in the join graph G’ differs
from their corresponding edges in the join graph G.

In this section, we illustrated that ROX is a robust run-time optimizer
capable of using sampling techniques to learn about the queried data.
By using two identical XQueries with a slight difference in one of their
predicate conditions, we tested the different correlations existing in the data.
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ROX reacted in a proper manner to the introduced change by detecting
and exploiting the correlations to produce good execution plans.

Conclusion

This chapter has described ROX, our run-time XQuery optimizer, and has
presented the ROX algorithm. We focused in this chapter on explaining
ROX in the context of database systems optimized to fully materialize
their intermediate results. The design of ROX on top of pipelined database
systems is the subject of Chapter [6} We have proven that the paths chosen
during the optimization phases of ROX are guaranteed to be superior and
safe to execute. We have also presented the differences between the theoret-
ical and implemented chain sampling techniques. Additionally, the power
of ROX has been illustrated using an example XQuery. Experimental proof
of the robustness of our optimizer is given by the conducted experiments
and their results shown in Chapter
In the following, we summarize the most important aspects of ROX:

1. Beyond the current state-of-the-art: ROX is one of the very few
techniques in the relational context and the first in XML that goes
beyond simply moving query optimization to run-time to intertwining it
with query evaluation.

2. Autonomy: ROX is an autonomous run-time optimizer. It is not
dependent on any predefined cost models nor a priori collected
statistics. Hence it is independent of any assumptions made about
value distributions. ROX makes informed optimization decisions by
observing, with the help of sampling techniques, the characteristics
of the data in base tables and intermediate results.

3. Detection of correlations: The adopted optimization design em-
powers ROX to detect correlations in the queried data. This is
achieved through first the alternation of optimization phases and
execution steps after which the knowledge in the join graph is up-
dated using newly up-to-date materialized intermediates. Second,
chain sampling through branches in the join graph enables ROX to
discover existing correlations among the joined nodes. We note that
our chain-sampling technique provides the first generic and robust method
to deal with any type of correlated data.

4. Quality of decisions: During chain sampling, the choice of the path
to execute is performed by the STOoPPINGCONDITION or the SUPERI-
ORPATH functions. Both functions guarantee that the path returned for
execution is a path superior to all the explored paths. This is one of the
reasons behind the robustness of ROX which will be experimentally
assessed in Section [5.5



Conclusion

5. Seamless handling of XPath steps and relational joins: ROX is the
first optimizer which can seamlessly optimize the execution order
and direction of XPath steps and relational joins. Moreover, by
breaking-up and stitching complex path expressions, ROX can start the
execution of an XQuery query from almost any of its XML nodes.

6. Dynamic environments: Unlike classical optimizers which can be
optimized to handle a specific query load, ROX is not “query specific”.
Due to its independence of any a priori collected statistics, ROX
is capable of adapting to different query loads, hence performing
well in dynamic environments where the workload is continuously
changing.
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Prototype and Experiments

To test our proposed run-time optimizer, we implemented a prototype of
ROX on top of the database system MonetDB/XQuery [20]." We chose
for this specific system because of its relational database back-end, its
public availability in open-source, and the fact that its Pathfinder XQuery
compiler? can provide ROX with an isolated join graph as input [59} [60].

To put the conducted experiments in the proper context, this chapter
first gives a brief description of the MonetDB/XQuery database system,
and the operators it supports. Then it explains the implementation of
the sampling techniques and the physical operators used in the sampling
and execution of joins in the ROX prototype. Finally, the experiments
conducted to prove the robustness and efficiency of the run-time optimizer
are presented.

5.1 Prototype Platform: MonetDB/XQuery

A prototype of ROX is implemented on top of MonetDB/XQuery [20].
We use the “Jun2008” release of MonetDB/XQuery as platform for our
prototypical implementation of ROX. We implemented our ROX approach
in Java; the prototype extracts the Join Graphs that Pathfinder generates
from an XQuery, and passes these to its runtime optimization and execution
engine. We mention that a demo of ROX has as well been developed using
MonetDB/XQuery as backend [8].

This section starts with a short introduction of the XML storage in
MonetDB/XQuery, and then it describes the Staircase Join operator [57] used
for processing XPath steps, and finally the supported indexing structures.

http://monetdb.cwi.nl/XQuery/
*http://www-db.informatik.uni-tuebingen.de/research/pathfinder
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The post number of a node can be
computed from its pre, size, and level
attributes: post = pre + size — level.

Figure 5.1 The tree representation of an XML document and the corresponding stored
prelsizellevel relational table.

Storage Structure

The MonetDB/XQuery system employs an updatable document represent-
ation in which schema-free XML documents are shredded into relational
tables using the range-based pre/post numbering scheme. Relational tables
in MonetDB are stored in a vertically fragmented fashion in memory-
mapped arrays. In the MonetDB pre/post range-encoding, an XML node n
is represented by the triplet pre, size, and level. Note that the post number
of an XML node can be computed from its pre, size, and level attributes.
Figure [5.1| shows the tree representation of an example XML document
and its corresponding relational table stored in MonetDB. The pre number,
the node identifier of the XML node 7, is a generated number reflecting
the order of opening tags in a pre-order traversal of the XML tree. The
attribute size represents the number of nodes below # in the XML tree,
while level consists of the level of n in the tree. Information about every
XML node in the document is stored in a separate relational tuple, with
the node identifier pre as key.

The pre node identifier is a virtual, generated column, representing the
tuple sequence number in the table. Therefore, when pages are inserted
at some position in the table, the data on other pages is not affected,
making structural XML updates (insert, delete) relatively cheap [20, 21,
22]. A property of this pre-based encoding scheme is that nodes can
be identified with a simple integer, and compared with a fast integer
comparison. Another advantage of the pre-identifier node representation
specific to the MonetDB context is that pre-identifiers can be used as direct,
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physical table offsets. Since in MonetDB, tables are memory-mapped and
vertically fragmented, lookup operations can be done in O(1).

Pathfinder: Pathfinder, the XQuery compiler built on top of MonetDB,
takes as input an XQuery query, compiles it into a relational DAG, and
then optimizes it. The Pathfinder optimization phase is limited to static
compilation, normalization, simplification of the DAG, and the identifica-
tion of the join graphs. The join graphs isolated during optimization are
sent as input to ROX for further optimization. We refer the reader back to
Section for a description of the optimization phase in Pathfinder.

5.1.2 Staircase Join

An advantage of the adopted range-encoding is that all XPath axes can be
expressed as standard purely relational operators with predicates on the
pre, size, and level attributes [58]. It has been shown, however, both in the
context of MonetDB/XQuery [20] as well as Postgres [93] that performance
gain in evaluating XPath steps is achievable if a tree aware operator is used.
As a consequence, the XQuery module of MonetDB has extended the
supported relational algebra with the staircase join operator, a structural
join capable of exploiting the tree properties of the pre/post plane.

The staircase join evaluates a single XPath step with linear complexity
and at most a single sequential pass over the XML document representation,
returning a set of tuples (nodes) duplicate-free and in document order [57].
The staircase join with axis step axis::k is defined as follows:

Dy/axis

<1 (C,S) ={[c,s] | ceC,s€S : kind(s.pre) = k A s.pre € axis(c.pre)}
k € {*, doc, elem, text, attr, comment,
pi}

where ) )
axis € {a.nc, ancs, child, parent, desc, self,

descs, foll, folls, prec, precs}

The notation s.pre € axis(c.pre) means that the tree relationship between
the nodes s are c is of type axis. If, for instance, axis denotes a child
relationship, then s is a child node of c. The staircase join uses as starting
point a set of context nodes C, and takes as right input either the entire
document (S = D), or a kind restriction on return node kind k (S = D),
or any subset (S C D). It selects and returns all nodes in S that satisfy the
relation (axis::k) with any node in C. The returned table [c, s] is sorted in
document-order on s. Though defined here as a set, the implementation of
the staircase algorithms expect both inputs C and S to be tuple sequences
sorted on pre.
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The staircase join uses a variety of techniques (pruning, partitioning,
skipping) to optimize its execution of an XPath step [57]. If the right input
of the staircase join is the full XML document D (S = D) or a kind restriction
(S = Dy), the execution of the step performs at most one sequential scan
over the document D while skipping over non-matching nodes. If the right
operand is a subset S of nodes from D, the staircase join performs a special
step-driven intersection that uses binary search for skipping over both the
C and S sides to only process nodes that actually generate a result. Its
awareness of the XPath and XQuery semantics makes the staircase join
implemented in MonetDB/XQuery significantly more efficient in practice
than normal structural joins [20].

Loop-Lifting

In XQuery, XPath expressions occur nested in for-loops, which implies
that the step must be executed for multiple context sequences, and must
produce multiple, independent, results. To avoid multiple document
traversals, one for each context sequence, all staircase join algorithms in
MonetDB/XQuery are loop-lifted, which means that query evaluation for
all nested iterations can still be performed at once in a single sequential
pass with skipping. The use of the loop-lifting strategy allows to optimize
away some avoidable duplicate elimination and sorting operators. To still
produce the correct results, loop-lifting assigns, during query evaluation,
two extra attributes iter and pos to every XML node. The two attributes
denote, respectively, the iteration to which an XML node belongs and its
position in a given sequence of nodes. For more details on loop-lifting and
the introduction and maintenance of the iteration and position attributes
of XML nodes, we refer the readers to [61]. We stress that our join graph
is also loop-lifted, that is every vertex in the join graph is aware of the
for-loop to which it belongs, and the optimization and execution phases
of ROX take care of introducing and maintaining the correct identifiers.

Index Structures

In database systems, indexes are used as a tool to efficiently retrieve tuples
matching a specific predicate, hence reducing the complexity of query
processing. Various XML indexing structures have been proposed, such as
element indexes [26} 39| 81} [82], data guides [52} [125], and various kinds of
structural and value synopses [10, 45} |46} [88) [104), [T05) [106) [127].
MonetDB provides its own collection of indexes built on top of shredded
XML documents. Currently, MonetDB supports an element index and a
value index that covers the values of all text and attribute nodes in the
document. The element index is used to retrieve XML nodes with a specific
qualified name. Given a certain equality predicate condition, the value
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index fetches the text or attribute nodes satisfying the predicate value. All
index-lookups return a list of node identifiers (pre), duplicate-free and in
document-order. We now formally define the index operations.

Element index: given a document D and a qualified name g, the element
index returns all XML nodes in D with qualified name g:

EVHD(q) = {pre(e) |e € D :kind(e) = elem A gname(e) = g}

Text value index: given a document D and a value v, the text value index
returns all candidate text nodes in D with value v:

text

Vp() = {pre(t)|te D:kind(t) = text A fn:data(t) = v}

Attribute value index: given a document D, two qualified names g,;; and
Gattr, and a value v, the attribute value index returns all the elements in
document D with qualified name g,;; that are parent to candidate attribute
nodes with qualified name g, and value v:

attr

<V D(Geit, Gartr,v) = {pre(e) | e € D: kind(e) = elem A
qname(e) = Gy N €/@qapr = v}

All indexes are stored in a materialized and physically clustered (index
organized) tables. The element index is a table of the form [gname, pre]
sorted on the qualified name gname. The value index uses a specialized
hash function described in [116} [117] which maps a string value into an
integer hash value such that hash collisions are kept low. The index is
sorted on the key value.

For each vertex in the join graph denoting either an element type or a
text node with an equality predicate, the element index and the value
index can be respectively used to efficiently retrieve, as well as determine
the count of all qualifying matching tuples. Since the indexes are tables
ordered on the key value, an index lookup comes down to determining
the start and end boundaries of the selected value. The complexity of an
index lookup, and consequently the cost of finding the count of qualifying
tuples, is independent of the result size, and is logarithmic to the index
size. As a concluding remark, given a predicate p, the appropriate index
can be efficiently sampled to retrieve a sample of nodes satisfying p or to
determine the number of qualifying nodes.

We note that it is also possible to use the value indexes to execute
equi-join operators. Given a set of number values, the value index can
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be probed to evaluate an equi-join between two vertices in the join graph
denoting either two text or two attribute node types.

Recently, two new updatable value indexes have been announced in Mon-
etDB/XQuery [116, [117]. The first is hash-based and provides equality
lookup on the string value of any XML node, including mixed content
nodes. The second index allows range-lookup on any XML typed value, e.g.
xs:double values. Adopting the new indexes in ROX is a straightforward
task and will expand the optimization possibilities in ROX.

Sampling Operations

In this section, we describe the implementation of the sampling operations
used by ROX.

Sampling from Tables and Indexes

To build a sample of the nodes corresponding to a vertex v in the join
graph, ROX uses two different techniques depending on the vertex type:
1. If v is an executed vertex (i.e. at least one of its outgoing edges is
executed), the full table TBL(v) associated with v is sampled.

2. If v is not an executed vertex, the corresponding element or value index
is sampled.
In the following, we describe the implementation of sampling from tables
and from indexes.

Sampling from tables: To construct a sample from a given table, we
chose for the simplest technique which picks in a completely random
and uniform manner the tuples to include in the sample set, that is the
probability of inclusion of a tuple in the sample set is uniform among all
the tuples in the table. We realize that more sophisticated methods [100]
(e.g. duplicate-free samples, weighted samples, stratified samples, ...)
can be used and will lead to more representative sample sets, and sub-
sequently possible improvements in the current results accomplished by
ROX; however, as the experiments show (Section , ROX achieves a
robust performance even when such a simple sampling method is utilized.

Sampling from indexes: In ROX, available XML element and value in-
dexes are sampled to construct the sample table associated with a given
vertex in the join graph. Efficient and reliable sampling from indexes, using
techniques like partial sum trees is well known [100]. Since an element index
is a materialized table, the technique to sample from an element index is
similar to that of sampling from a table (described above). Therefore, using
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the element index to sample a set of XML nodes with the qualified name g
boils down to sampling the sub-table consisting of the region between the
start and end boundaries of the qualified name 4. As the structures that
store the value indexes are more complex, a simpler alternative sampling
approach is adopted for convenience. To get a sample s of size T = |s| for
lookups on value v from a document D, we simply use the cutoff-sampling
technique on top of the index scan operator: >+ (v p(v)). This translates to
a partial execution of the index scan operator until the required number of
satisfying tuples (7) is retrieved.

5.2.2 Sampling Joins

ROX samples a given join by first picking a random set of tuples from one
of the operator’s input table and then joining it with the other operand.
Two types of joins are found in our join graph: relational joins and XPath
steps. In this section, we explain in more detail the sampling techniques
used to sample both kinds of joins.

Sampling Relational Joins

A relational join represented by the edge e = (v1,v7) in a join graph occurs
between two vertices representing either two text nodes or two attribute
nodes. The semantics of the join is a value-based comparison between
the tables associated with v; and v,. To sample the relational join, ROX
uses two different physical operators based on the type of vertices of the
corresponding edge e:

1. Case 1: If at most one of the vertices of e is an executed vertex, then

an index-based sampling technique is used.

2. Case 2: If both vertices of ¢ are executed vertices, then a hash-based
sampling technique is used.
In the following, we describe the above two cases in more detail.

Case 1: To sample the relational join corresponding to the edge e =
(v1,v2), a sample of the values associated with one of the vertices, say v,
is used to probe the text or attribute value index built on the document
from which v, is selected. The sampling operation returns a sample of the
join TBL(v1) 1 TBL(v;) and an estimation of the size of its full result as
shown in Figure This index-based join sampling operation conforms
to the zero-investment property introduced in Section since its cost
depends on its left sampled input and it requires no investment prior to
starting sampling.

Case 2: The usage of an index-based sampling is not possible when the
two vertices v1 and v, are executed vertices, since the index built on the
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Figure 5.2 The sampling of an equality join

document of either v; or v, does not take into account the result of the
executed edges of v; or vp. Consider the join graph in Figure in
which the vertices v; and v, are executed vertices (their outgoing edges
(vg,v1) and (vy,v3) have already been executed in a previous execution
step of ROX). When sampling the edge (v1,v;), ROX wishes to estimate the
cardinality of the expression (TBL(vg) >t TBL(vy)) > (TBL(v,) >t TBL(v3))
as illustrated by the plan in the same figure. Since the full table associated
with a vertex in a join graph is updated to the result of the execution of
its edges, ROX samples the edge e by joining the sample table SMPL (v )
with the full table TBL(v;) associated with v,. We choose to use a hash-
based join to perform the sampling operation, although we realize that it
requires hashing the full table TBL(v;), and as a result does not conform to
the zero-investment property. We argue, however, that a zero-investment
sampling operation is simulated. In fact, if the edge (v1,v2) needs to be
executed during a subsequent execution step, the table TBL(v,) would be
hashed before performing the execution. The latter implies that instead of
building the hash-table during the full execution of the edge (v1,v;), the
hashing operation is moved to an earlier time and rescheduled to occur
when the edge is sampled. If the hash table is indeed used during the
execution of the edge, then building the hash table before the sampling
operation is similar to using a sampling operation that is compliant to the
zero-investment property.

The hashing operation will add a small cost (linear to the size of
TBL(vy)) to the sampling process. We note that this cost of hashing is
amortized, since the hash table will be used by subsequent operations
sampling another equi-join edge of vp. Additionally, the full table of a
vertex that has no unexecuted edges does not have to be hashed. Since the
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relational join in our prototype are restricted to equi-joins, it is possible to
restrict ourselves to hash-based sampling operation. To sample joins with
inequalities, a sort-merge implementation can be used. In that case, the
full table is sorted instead of being hashed.

Sampling XPath Step Joins

In the ROX prototype, an XPath step is executed using the staircase join
operator. The staircase join operator is defined in Section[5.1} To sample
the XPath step represented by the edge (v1,v;) having the label ax, a
sample of nodes associated with one of the vertices, say v, is joined with
all the nodes corresponding to the other vertex v,. The type of staircase
join used depends on whether the full table associated with v; is already
materialized. We therefore discuss the following two situations:

® TBL(vp) # NULL : The edge (v1,v;) is sampled with the following
staircase join operator:

Dy/ax

<J(SMPL(v1), TBL(v2)) where k is the type of the vertex v,

The staircase join takes as left and right input the sample table
SMPL(v,) and full table TBL(v;), respectively.

e TBL(v;) = NULL : In this case, the sampled staircase join cannot take
as right input the full table associated with v,. Let D be the document
from which the vertex v; is selected, then the edge (v, v;) is sampled
with the following staircase join operator:

Dy/ax

<J(SMPL(v1),D) where k is the type of the vertex v,

Due to its efficient implementation and its linear evaluation of an XPath
step, the staircase join operator satisfies the zero-investment property as
long as both its inputs are ordered.

We have already mentioned in Section that the staircase join
requires its left and right input to be in document-order. When sampling
an XPath step, the right input R of the staircase join is sorted if R is the
full document or a set of nodes directly selected with an index lookup.
When R is the result of a previously executed edge ¢/, there are two cases
to consider. In the following, we suppose that R is the full table associated
with the vertex vy:

1. If the edge ¢ is an XPath step, and ¢’ was executed with v, as its
right operand, then the resulting relation R is already sorted. As we
know from Section [5.1.2} the result of a staircase join is a set of tuples
sorted in document-order on the attribute of its right operand.
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2. In all other cases, the relation R is sorted while updating the full table
of vy to the intermediate result generated by ¢’ and materializing
the output. As discussed in the previous section about sampling
relational joins, a zero-investment sampling operation is simulated
since the relation R would be sorted anyway during the execution
of any of the edges of v,. Moreover, the cost of sorting is amortized
since the sorted table R will be re-used in subsequent operations
sampling any of the outgoing edges of v,.

Note about the execution of joins in the join graph: We have described
the physical operators used to implement the sampling of the relational
joins and XPath steps in the join graph. We note that the same physical
operators are used to execute the two types of joins except that the execution
uses as left input the full table (instead of the sample table) associated with
the corresponding vertex of the edge.

Cutoff-Sampling

In this section, we describe the implementation of cutoff-sampling a join
operator in the ROX prototype. We then explain a drawback in the adopted
implementation, and describe one potential solution.

Given as input the join r > T, cutoff-sampling >1.1urt matches iteratively
in a sequential manner one tuple from r with the tuples in T. The matching
process stops when the size of the generated result S reaches the value
LIMIT. Therefore, only a fraction of the tuples in r are consumed by the
joining process.

The adopted implementation of cutoff-sampling is biased to the front
tuples in r. Let A be the set of tuples processed from the relation r. For
each tuple a in A, all matching tuples in T are added to the result S. Let h,
denote the number of inner tuple hits from T on the current outer tuple a.
Potentially, for some tuple a € A, the number of hits might be greater than
one (h, > 1), that is a joins with at least two tuples in T. Therefore, and
since the result generation of the joining process is restricted to an upper
bound limit, a statistical bias towards the first tuples in the sample set r is
introduced. The higher the value of k, for each tuple a € A, the greater the
bias. This problem is illustrated in Figure The sampled table r consists
of eight tuples and only half of those are consumed (A = {1,2,3,4}) by the
cutoff-sampling operation to generate the required result size. Therefore,
the last four tuples in r are not represented in the sampling result.
This front-biased cutoff sampling implementation has two consequences:
¢ The hit ratio of the join r > T estimated and returned by the cutoff-
sampling operation might be off the real value, resulting in less
accurate result size estimations.
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Figure 5.3 The result of cutoff-sampling the join between r and T with the operation
D>g(r < T). The set of processed tuples from ris A = {1,2,3,4}. For most tuples
a € A, the number of inner tuple hits /1, is a considerably large percentage of the cutoff
limit 8. This creates a bias towards the front tuples in 7: the remaining tuples {6, 7,8, 9}
are not represented in the sampling output result.

¢ The result generated by the cutoff-sampling operation might not be
representative of the full result of the join > T. This can become a
problem in chain sampling as the bias accumulates over subsequent
sampled operators.

A potential solution to the problem, illustrated in Figure is to adopt a
cutoff-sampling technique that is not front-biased. The approach would
observe the amount /, of inner tuple hits on the current outer tuple a,
and add only a number n of all the h, tuples to the result. The other
h, — n following inner tuples are skipped. The number of added tuples is

a percentage of the pre-defined cutoff limit: n = {LIMITJ . If, after all the

Irl
tuples in r are consumed, the required cutoff limit has not been reached,
then the skipped inner matching tuples are added to the result. Although
h; — n inner matching tuples are disregarded for a given tuple 4, the value
h, would be noted by the cutoff-sampling technique to derive the exact hit
ratio hr of the join r > T. The hit ratio hr is computed by summing up
the individual #,; and dividing the sum by the size of the sampled input:
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Figure 5.4 The non front-biased cutoff-sampling technique. For every tuple a in 7, the
number /1, of matching tuples in T is observed, and only 7 inner tuples are added to the
sampling result. The following /1, — 7 inner tuples are skipped. In this example, we have
n= % = 1. The solid lines indicate the matching tuples added to the sampling result while
the dashed lines correspond to the disregarded matching tuples. Since all the tuples in 7 are
processed before reaching the cutoff limit, some of the skipped inner matching tuples are
subsequently added to the result. In this example, only a single previously disregarded tuple

is added to the sampling output.

=1
hr = B ;ha.
This implementation of cutoff-sampling guarantees that the sampled

join result stays in line with the sampled input without front bias, rendering
the observations made during the chain sampling process more reliable. It
also ensures a more accurate estimation of the result size of the join since
all the tuples in r are processed and the number of matches h, is noted
down to compute the exact value of the hit ratio of ¥ > T.

In the implemented ROX prototype, we adopt the front-biased cutoff-
sampling technique. Since our focus is on run-time query optimization
rather than on new sampling methods, we refrained from extending the
underlying database system MonetDB/XQuery with such new physical
cutoff-sampling-aware XPath step and relational join operators, and accep-
ted the front-bias risk. Fortunately, the conducted experiments have shown
that ROX performs well, even in the presence of such a risk.
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Wrap-up

We have, in the previous sections, described MonetDB/XQuery, the data-
base backend on top of which the ROX prototype is built. We have also
explained the staircase join physical operator used to execute the XPath
steps in the join graph, and the type of indexes supported by MonetDB.
The implementation of the sampling and execution operations of relational
joins and XPath steps as well as the cutoff-sampling technique were also
presented. We pointed out that the cutoff-sampling technique implemented
in MonetDB is front-biased, and we have described a potential solution
proposing another cutoff-sampling approach which is not front-biased. We
again emphasize that the operators used in the sampling of joins com-
ply to our introduced zero-investment property. In some cases, however,
the sampling operators require the hashing or sorting of the input tables
before initiating the sampling operation. For these operators, we have
stressed that they still simulate the use of zero-investment operators since
the hashing or sorting operations would have been performed anyway
in a subsequent execution step, and the cost of these two operations is
amortized as their result might be used in later sampling operations.

In the following, we describe the conducted experiments and report
the observed results.

5.3 Overview of Experiments

In the conducted experiments, our run-time optimizer ROX is tested against
different data-sets and queries. We use documents containing on the one
hand synthetic data and on the other hand real-life data (DBLP data set).
The following points are the subject of the conducted experiments:

1. The main objective of the experiments is to assess the robustness of
ROX in always picking (near-)optimal plans and invariably avoiding
the bad ones.

2. We take a close look whether ROX is successfully defining a good
execution order and direction for both the relational joins and XPath
steps in the join graph.

3. Another tested point is the ability of ROX to detect and adapt to

different correlations in the queried data, and to exploit them to
produce good plans.

4. The efficiency of ROX is also investigated by measuring the amount
of sampling overhead incurred during the optimization steps.

5. Finally, we examine the impact of different sample sizes on the
sampling overhead, and the sensitivity of the robustness of ROX to
the used sample sizes.
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XMark Experiment

The objective of our first set of experiments is to make a quick comparison
between the performance of MonetDB-with-ROX and MonetDB-without-
ROX, and to show the ability of ROX in detecting the correlations and
exploiting them to generate good execution plans.

We reconsider the two queries on the XMark document presented in
Section We once again present the query Q and its variant Q':

Query Q

let $d := doc(‘“‘xmark.xml’’)
for $o in $d//open_auction[.//current/text() > 145],
$p in $d//person[.//province],
$i in $d//iteml[./quantity = 1]
where $o//bidder//personref/@person = $p/@id and
$o//itemref/@item = $c/0Qid

return $o

Query Q'

let $d := doc(‘“‘xmark.xml’’)
for $o in $d//open_auction[.//current/text() < 125],
$p in $d//person[.//province],
$i in $d//iteml[./quantity = 1]
where $o//bidder//personref/@person = $p/@id and
$o//itemref/@item = $c/0id
return $o

We execute the two queries in MonetDB/XQuery with and without ROX
using an XMark document of size 112 MB, and we measure the elapsed
running time of the generated plans. Figure reports the execution
times of the plan generated by ROX excluding and including the sampling
overhead, and the plan generated by the Pathfinder compiler for the two
queries Q and Q'. The shown times are normalized relative to the fastest
of the 3 plans.

We notice that the plan generated by Pathfinder is about 4 orders
of magnitude slower than the ROX plan. However, we emphasize that
the optimizer built in Pathfinder is not equipped with a module which
re-orders select and join operators in the compiled plan based on their
selectivities. In fact, Pathfinder produces the same plan for both queries Q
and Q’, and in those compiled plans, the selections are not pushed down,
(e.g. the selection on the current value is executed last). We also note
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Figure 5.5 Execution times of the plans generated by ROX including and excluding the
sampling overhead, and the compile-time optimized plan generated by MonetDB/XQuery
without ROX running on top. The plotted times are normalized to the fastest of the 3
considered plans.
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Figure 5.6 Execution times of the plans P’ and P_1>5 generated for the query Q' by
respectively ROX and the considered compile-time optimizer. Similarly, the plans P and
P’<145 produced by the two optimizers for the query Q are shown. The plotted times are
normalized to the fastest of the 2 generated plans for each query.

that, for both queries, the overhead introduced by the sampling in ROX is
around 20% of the execution time.

To have a fairer comparison, we consider, in our second XMark experiment,
a compile-time optimizer with optimization capabilities better than those
in the Pathfinder optimizer. We also stress that the considered optimizer is
capable of generating better plans than a typical compile-time optimizer.
We refer to the plans generated by ROX for Q and Q' as, respectively, P and
P'. The considered optimizer successfully optimizes the query Q producing
the same plan P generated by ROX, but unable to detect the difference
in correlation between the two queries Q and Q’, it fails to generate the
plan P’ for Q'. Instead it generates a plan P_1;5, which shares the same
operators and ordering as P, but in which the predicate condition on the
current/text () node is replaced with < 125.
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Figure [5.6|illustrates the elapsed time of the two plans P’ and P_155
generated for the query Q' by respectively ROX and the considered compile-
time optimizer. The plotted times are normalized to the fastest of the two
plans. The execution time of P15 is 54% slower than the ROX plan P’. We
note that the main difference concerning the ordering of operators between
the two plans P’ (refer back to join graph G’ in Figure and P15
(refer back to join graph G in Figure is the execution order of the two
longer sequences of operators branching from the vertex open_auction, i.e.
which of the branches is executed first (the order of the operators inside
each branch is almost similar in the two plans). This explains the fact that
the gap between the execution time of the two plans is not in the order of
magnitude (the plan P15 is already close to optimal as all the selective
selections are already pushed down). ROX; however, succeeded in identifying
that reversing the execution order of the two branches results in a better plan. We,
therefore, conclude that ROX is highly sensitive to the differences in the
correlation between the two queries Q and (Q’, and has the ability to exploit
it to find better orderings of the operators in the plan.

We have repeated the same experiment for the query Q, and we came to
the same aforementioned conclusions. In this experiment, the considered
optimizer successfully optimizes Q' generating the same plan P’ produced
by ROX, but fails to generate the plan P when optimizing Q. Instead, it
produces the plan P’ ;,; which shares the same operator ordering as P, but
in which the predicate condition on the current/text () node is replaced
with > 145. Figure [5.6 plots the execution time of the two plans P and
P’>l 45, hormalized to the fastest of the two. The execution time of P’>l 45 18
12% slower than the ROX plan P.

DBLP Experiment

The XMark experiment we just described illustrates the principles and
potentials of ROX concerning data correlations. However, it represents
only one specific case with limited potential for variation. To prove the
robustness of ROX, its stability and ability to detect and exploit the cor-
relations existing in the queried XML documents, we need to assess the
behavior and decisions made by our run-time optimizer on a set of queries
that exhibits a large variety of different constellations. To achieve this, we
use the DBLP XML dataset? which contains real-world data with different
types of correlation among its nodes.

In addition to testing the robustness of ROX, the experiments also
investigate the importance of correctly ordering the XPath steps among
equi-joins, the amount of sampling overhead incurred in ROX, and the

3http://dblp.uni-trier.de/xml/
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impact of the sample size on the sampling overhead and the quality of
plans generated by ROX.

For all experiments presented in this section, we use a PC equipped
with two 2 GHz dual-core AMD Opteron 270 processors, 8 GB RAM and a
RAID-0 disk system. The machine is running 64-bit Fedora 8 (Linux 2.6.24).
MonetDB/XQuery is configured with optimization enabled and compiled
with GNU gcc4.1.2. We note that all the times shown in our plots are
normalized.

5.5.1 Dataset and Query Template

The DBLP document, composed of a sequence of entries for articles, inpro-
ceedings, books, etc., is divided into ~4500 single XML documents, one
for each journal and conference series covered by DBLP. On this dataset,
we use the following XQuery template that asks for authors who have
published in all four different journals and/or conference series:

for $al in doc(‘‘DOC1.xml’’)//author,
$a2 in doc(‘‘DOC2.xml1’’)//author,
$a3 in doc(‘‘DOC3.xml’’)//author,
$a4 in doc(‘DOC4.xml1’’)//author
where $al/text() = $a2/text() and
$al/text ) $a3/text() and
$al/text () = $ad/text()

return $ail

The join graph corresponding to our query template is depicted in
Figure The solid edges arise from the original join graph as extracted
by the Pathfinder compiler from the XQuery template. The dotted lines
denote join equivalences implied from the three equality joins defined in
the query template, and are added by ROX to extend the search space of
plans allowing for more flexibility to find a (near-)optimal plan. We note
that this optimization technique of equality equivalences is not specific to
ROX, and might very well be in use in other relational database systems.

The ~4500 XML documents are categorized into different classes, each
class representing a different research area (i.e. Databases, Data Mining,
Information Retrieval). The idea of the experimental setup is to replace the
four documents in the query template with documents chosen from one or
more research areas. This results in a variation in the degree of correlation
in the query: it is in general more likely that authors publish in various
journals and/or conferences belonging to the same research area, rather
than that an author publishes in different research areas. Suppose that in
our template join graph, DOC1.xml is assigned a database conference while
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root root root root
DOC1.xml DOC2.xml DOC3.xml DOC4.xml
T // T // T // T //
author author author author

Figure 5.7 Join graph corresponding to the DBLP query template. The solid lines corres-
pond to the edges in the join graph generated by the Pathfinder XQuery compiler. The dotted
lines are added by ROX and represent join equivalences implied from the three equality joins
defined in the query template.

the other 3 documents are replaced by 3 different information retrieval
conferences. Therefore, it can be predicted that the join between the
authors of the first document and any of the other 3 documents has a
considerably lower selectivity than a join between any two information
retrieval conferences. ROX will need to accurately estimate the result size
of the equi-joins to detect the correlation among the queried documents.

The ~4500 documents yield a total number of 409515972723000 of
4-documents combinations. We believe that testing this big number of
combinations will take unnecessarily a large amount of time without much
impact on the experimental results, we, therefore, restrict ourselves to 23
“representative” documents chosen from 5 research areas. The selected
documents and their research area(s) are listed in the first 2 columns of
Figure The original DBLP dataset consists of a ~450 MB XML doc-
ument, and the size of each of the ~4500 journals and conference series
ranges from 300 B to 4.8 MB in size. Even when choosing the four largest
journals/conferences, ROX + MonetDB/XQuery manages to evaluate the
defined query in less than 50 milliseconds. To achieve more reliable per-
formance measurements, we scale the selected 23 documents 10x and
100x by replicating each article n € {10,100} times, respectively. To avoid
duplicates and to maintain the original data distribution and correlation,
we suffix the titles and author names of each replicated article with a serial
number from [1,...,n]. The total size of the 23 documents included in our
experiments is 15 MB (x 1) and 1.5 GB (X 100). Figure [5.8|lists the size of
each of the 23 documents and the number of author nodes contained in
each document, before (x 1) and after (x 100) the scaling up.
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journal/conference research | document size | # author tags

name area(s)(l) x 1@ | x 1000 | x 1) | x 1000

1- Fuzzy Logic in
Artifiycial %ntelligence Al 12KB| 1.2MB 62 6200
2 ﬁrl’c\lileté?cliir;telhgence Al 332KB| 33MB| 2264| 226400
3-  AAAI Al 1.1MB| 105 MB| 6832| 683200
4- CANS Al Bl | 32KB| 3.1MB| 214| 21400
5- BMC Bioinformatics BI [440KB| 44MB| 3547| 354700
6- Bioinformatics BI | 2.1MB | 205 MB | 15019 | 1501900
7-  BIOKDD DM BI | 22KB| 2.1:MB 139 13900
8- MLDM DM 99KB| 99MB| 575| 57500
9- ICDM DM 348KB| 35MB| 2205| 220500
10- KDD DM 460KB| 46MB| 3201| 320100
11- WSDM DM IR | 13KB| 1.2MB 95 9500
12- INEX IR | 54KB| 54MB| 342| 34200
13- SPIRE IR |124KB| 13MB 724 72400
14- TREC IR |304KB| 31MB| 2541| 254100
15- SIGIR IR |811KB| 81MB| 4584| 458400
16- ICME IR |828KB| 83MB| 5757| 575700
17- ICIP IR |1.2MB| 113MB| 7935| 793500
18- CIKM DB IR |629KB| 63MB| 3684 | 368400
19- ADBIS DB 294KB| 29MB 947 94700
20- EDBT DB 389KB| 39MB| 1340| 134000
21- SIGMOD DB 1.8MB| 173MB| 5912| 591200
21- ICDE DB 1.7MB| 163MB | 6169 | 616900
23- VLDB DB 2.1MB| 204MB| 6865| 686500

(1) AL = artificial intelligence, BI = bioinformatics, DB = database,
DM = data mining, IR = information retrieval

(2) Before scaling up the DBLP XML document

(3) After scaling up the DBLP XML document 100 times

Figure 5.8 The 23 chosen documents, the research areas they belong to, their size, and
the number of author nodes contained in each.

Using the 23 selected documents, we create a large variety of 831 4-
document combinations which we classify into the following 3 groups:

1. Group 2:2 This group contains all combinations of 4 documents such
that two documents are chosen from the same research area and
the other two are picked from another research area. For instance,
belonging to this group is the document combination: ICDE, VLDB,
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SIGIR, and TREC. The first two documents correspond to database
conferences while the last two are information retrieval conferences.

2. Group 3:1 This group contains all combinations of 4 documents such
that 3 documents are chosen from the same research area and one
from a different area.

3. Group 4:0 This group contains all combinations of 4 documents such
that all 4 documents are picked from the same research area.
The idea is that these groups roughly cluster the 4-document combina-
tions according to the type of correlation existing among the 4 documents.
Omitting document combinations that yield empty results with our tem-
plate query, group 2:2 contains 469 combinations, group 3:1 contains 337
combinations, and group 4:0 contains 25 combinations.#

By replacing the 4 document vertices in the join graph with the 831 created
document combinations, we test the robustness of ROX and its ability in
handling, detecting and exploiting different degrees of correlations. We
note that during the run-time optimization, a single chain sampling process
explores up to 15 different path segments in the join graph with a length
ranging between 2 and 4 edges.

Tested Query Execution Plans

For each of the 831 document combinations, a number of query execution
plans corresponding to the query template are created, executed, and their
execution time is compared. The first and second considered execution
plans are the ones generated by ROX including and excluding the sampling
overhead respectively. These two execution plans are referred to as “ROX
full run” and “ROX pure plan”.

To assess the quality of the query plans generated by ROX, we have
implemented a tool that enumerates all possible execution plans in the
search space of our query template. The enumeration tool varies the order
of equi-joins, the placement of location steps among the equi-joins, the
direction of path steps, and the use of indexes. In this way, it enumerates
a total of 88880 different physical plans for our 4-way join DBLP query.
Obviously, we cannot compare the 2 ROX generated plans to each of
the 88880 alternatives. Hence, we introduce a two-level categorization of
the plans. The first and most significant level is the equi-join order. For
our 4-way join query, there are 18 different ways to order the equi-join,
and consequently 18 categories. Execution plans with the same equi-
join order belong to the same category. The second categorization level

4We note that the 25 document combinations in the group 4:0 consist of 5 combinations
created using database conferences and 20 combinations created with information retrieval
conferences. Any 4 document combination chosen from the other 3 research areas generates
an empty result set and is therefore excluded from the experiment.
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is the placement of steps among the equi-joins. In total, there are 8o4
different ways to place the author/text () steps among the equi-joins. For
our experiments, we limit our considerations to 3 canonical plans each
exhibiting a specific step placement. The first denoted as “SJ]” consists of
executing the steps of all 4 documents before the joins in the same order
of the joins execution (S]=S,5,S:S;Jalp)c]4)- The second, referred to as “JS”,
corresponds to first executing one step to provide the initial input for the
join sequence, then all joins are evaluated, and the remaining 3 steps are
executed last (JS=S;JaJ1Jc]4SpScS4). The last canonical step placement is
denoted S_]J, and consists of first executing the initial step and join, then
a step corresponding to a certain document is executed right after the
document has been joined to the already generated intermediate result
(S_J=SaJa)»Sp)cScJ4S4)- The three canonical steps are illustrated in Figure
in which we consider the category of equi-join ordering where the join
between the second and third document is executed first, then the fourth
and first document are consecutively joined with the intermediate result.
The first canonical step placement SJ is depicted in Figure The circled
numbers represent the order of execution of the edges in the graph. The
second and third canonical step placements are illustrated in, respectively,
Figure and Figure Note that the edges from the root vertices are
not executed since they correspond to XPath steps with a descendant axis
and can therefore be skipped without generating erroneous results. Also
note that the redundant equi-join edges are not executed.

From the 88880 categorized plans, we pick two execution plans, named
respectively smallest and largest. The smallest execution plan belongs to the
equi-join ordering category that yields the smallest cumulative intermedi-
ate result sizes (i.e. the sum of all generated intermediate result sizes and
the final result size is the smallest). The step placement in the smallest plan
corresponds to the canonical step placement that has the smallest execution
time. The equi-joins in the largest plan are ordered such that the largest
cumulative intermediate result is generated, and the position of the step
operators matches the canonical step placement with the slowest execution
time. These two execution plans can be viewed as an approximation of
the plans at the lower and upper bounds of the search space of the query
template.

In addition to the smallest and largest plans chosen from the enumerated
search space, we assume a “classical” best effort compile time optimizer
equipped with an accurate cardinality estimation module. This translates,
in our DBLP example, to the optimizer correctly estimating the result size
of a join operator executed in the context of a single document, but lacking
the ability to estimate the cardinality of operations joining two different
documents. Consequently, the optimizer falls back on a simple “smallest-
input-first” heuristic to determine an appropriate equi-join order. This
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DO DOt DOt DO
T/ / T // T // T //
author author author author
@T/ @T/ @T/ @(f/
text() -

a The SJ canonical step placement. All steps are executed before the equi-joins. The order of execution of the
steps corresponds to the order in which the documents are joined together.

root root root root
DOC1.xml DOC2.xml DOC3.xml DOC4.xml
?/ / ? // ? // ? //
author author author author
@T/ @T/ @T/ @T/
text() - ® © text()

b The JS canonical step placement. One XPath step is executed to provide the initial input to the first join
operation. Then all joins are executed before executing the remaining three steps. The order of the execution of the
last three steps corresponds to the order in which the documents are equi-joined.

root root root root
DOC1.xml DOC2.xml DOC3.xml DOC4.xml
T/ / T // T // T //
author author author author
@T/ @T/ @T/ @T/
text() - text()

¢ The S_J canonical step placement. One XPath step is executed to provide the initial input to the first join
operation. Then the step of every document is executed directly after the document is equi-joined to the already
generated intermediate result.

Figure 5.9 The three canonical step placements for the equi-join category in which the
second and third documents are first joined, and then the fourth and first are consecutively
joined with the intermediate result.
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results in a linear join order such that the two smallest sets of author/text()
values are joined first, which is then joined with the second largest set, and
finally joined with the largest one. We note that this join ordering technique
with which the classical optimizer is equipped results in execution plans
that are faster than those generated by the compile-time optimizer of the
MonetDB/XQuery system.

Viewing the assumptions we made for the considered classical compile-
time optimizer as fair and reasonable, we believe that our considered
optimizer is comparable to a typical relational optimizer. In fact, enabling
the relational optimizer to accurately estimate the result size of an equi-join
between the different documents requires the construction of a synopsis
that summarizes the total number of authors shared between the four
documents. Although building such a structure for only 2 documents is
not hard (e.g. a two dimensional table with the different documents listed
on both the x and y axes, and in which the entered value is the number
of authors common to every two documents), to also accurately estimate
the result size of the 3 and 4 equi-joins will require a far more complex
synopsis. We believe that a typical relational optimizer would not maintain
the aforementioned synopsis for the following reasons:

1. With the numerous possible document combinations, the synopsis
consumes a large amount of space and requires a high maintenance
cost.

2. The synopsis is highly query specific: any modification to the DBLP
query by adding either a selection on the author name or another
attribute from the document, will render the synopsis useless. There-
fore, building such a synopsis does not pay off in general. Having a
more generic synopsis requires a more detailed view of the distribu-
tion of the authors between the documents, and a representation of
the correlation between the author nodes and the other attributes in
the document. This type of generic synopsis is even more complex,
space consuming, and requires a higher maintenance cost.

5.5.3 Influence of Equi-Join Order on Intermediate Result Size

Our first experiment is a demonstration of how the order of equi-joins influ-
ences the cumulative intermediate result sizes (and hence execution costs).
We consider the DBLP query template in which the queried documents
are set to the following 4 selected conferences: VLDB, ICDE, ICIP, ADBIS.
ICIP is an information retrieval conference while the other 3 are database
conferences. We calculate the sum of the number of tuples generated by
all equi-joins for every possible equi-join ordering. We stress that the sum
takes into account only those tuples generated by the equi-joins. As for the

145



5. Prototype and Experiments

146

1e+06 g - . i
2 : classical opt ROX join orders:
© ]
c ] (2-1)-4-3
B | x= (2-1)-3-4
S (3-4)-(2-1)
= 100000 E 52%3(2334)
(%] - ] ] -1)-2-
o N lz= (2-4)-1-3<=c¢c
_g ] (4-1)-(3-2)
= 17772 (3-2)-(4-1)
) L - 1 (2-4)-(3-1)
g 10000 V| o e
@ 1= (4-1)-3-2
£ ] mm (2-4)-3-1
g (3-2)-1-4
E (3-1)-2-4
o 1000 ¢ 4 m (3-2)-4-1
>
2 E 3 (3-1)-4-2
z 10 (3-4)-1-2
g 150 (3-4)-2-1<=R
O

100
Documents: 1=VLDB, 2=ICDE, 3=ICIP, 4=ADBIS (x100)
Figure 5.10 Impact of equi-join ordering on intermediate result sizes.

XPath steps, they are executed before the equi-joins providing the required
input to the equality joins.

Figure shows the results for the x 100 scaled dataset. The 18
different equi-join orderings as listed in the legend of the figure. The
join ordering chosen by ROX and the classical optimizer are indicated,
respectively, by the “R” and “c” arrows. The numbers represent the
queried documents, that is the join ordering “(3-4)-1-2” represents the
plan in which the third (ICIP) and fourth (ADBIS) documents are joined,
then the intermediate result is joined with the first (VLDB) and finally
second (ICDE) documents. Individual joins are (logically/semantically)
symmetric, but we distinguish linear and bushy plans. Parentheses in the
join order notation indicate precedence, and hence bushiness. Therefore, a
join ordering containing two pairs of parentheses represents a bushy plan,
while one with a single pair forms a linear plan.

Due to the correlation among the 3 database conferences, all join orders
that consider the information retrieval conference ICIP only at the end,
need to process considerably (between 2 and 3 orders of magnitude) larger
intermediate data volumes than those join orders that start with ICIP.
Moreover, the linear join orders which consider first ICIP and ADBIS (i.e.
(3-4)) generate less intermediate data than those which first join ICIP with
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one of the other two database conferences (i.e. (3-1) and (3-2)). This is
logical since ADBIS is a smaller database conference, and hence it is likely
it has less common authors with an information retrieval conference.

ROX manages to detect and select the equi-join order that creates the
smallest size of intermediates, while the classical optimizer is not able to
recognize and exploit the correlation. ROX chooses a join order which
considers ICIP and ADBIS first, and the classical optimizer joins first ICDE
and ADBIS, keeping the join with ICIP till the end. We also note that 16
out of the 18 equi-join orderings generate an intermediate result that is
more than an order of magnitude larger than the optimal one. We therefore
conclude that ROX was well able to selectively pick the plan with the best join
ordering even though the bigger portion of the search space contains plans that are
far from optimal.

5.5.4 Robustness of ROX

In this experiment, we assess the robustness of ROX in always picking a
good plan while invariably avoiding the bad ones.

We measure the elapsed execution time of the different defined plans for
the 831 document combinations using the x 100 scaled dataset. For every
combination of 4 documents, we compare the following five execution
plans: (1) ROX full run, (2) ROX pure plan (3) smallest equi-join order
plan + fastest performance step placement, (4) largest equi-join order plan
+ slowest performance step placement, (5) classical compile-time optimizer
plan.

We also compute a “correlation” measure for each combination of 4
documents. The measure represents the standard deviation of the se-
lectivity of the join between every pair of documents. For the document
combination D = {dy,dy,d3,ds}, we note by A; the set of author nodes in
the document d; (i € [1,4]). The correlation C of the document combination
D is computed as follows:

. |A; > Aj
Bld) = (AT AT)

1 4 4

mean = o <‘st(di,dj)>
=1 \ j=itl

diff (d;, d;) = (js(az,«,d]«)—mean)”Z

1 4 4

C = 5 <Z diﬁ‘(di,dj)>
Ci=1 \ j=i+1

where d;, d] eD
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The computed correlation measures the degree of dispersion of the se-
lectivity of the equi-joins in our DBLP query template. The higher the
correlation measure, the larger the selectivity dispersion, which means
that the choices of equi-join ordering made by the optimizer have a bigger
impact on the quality of the final execution plan. In other words, the
quality of the final plan is more sensitive to the made choices. The com-
puted correlation measures are used to quantify and illustrate the different
correlations tested during the experiment.

Figure|[5.11] presents the elapsed execution time of the 5 different considered
plans for each of the 831 document combinations. The plotted times are
normalized to the fastest of the 5 considered plans. In the plot, the
document combinations are clustered by the considered area distributions
2:2, 3:1, 4:0, (separated by vertical dotted lines), and within each cluster
ascendingly ordered according to their computed correlation value C. For
the smallest equi-join order and classical plans, the normalized execution
time of the fastest of the SJ, JS, and S_] plans is plotted. For the largest
equi-join order plan, the time of the slowest of the three canonical steps
placement is drawn. We remind the reader that the smallest and largest equi-
join order plans are used as an approximation of the plans at, respectively,
the lower and upper bounds of the search space of the query.

The reader of this plot should not try to examine specific cases but
should observe the trend created by the performance of the compared
plans. The almost straight line of triangles at the bottom of the scatter plot
shows that the plan found by ROX (“pure plan”) is almost invariably the fastest
plan. By comparing the circles with the triangles, that is, the ROX time
including sampling overhead with the pure plan, we notice that on average
the overhead imposed by sampling is around 27%, and almost always lower than
a factor two.

We also observe that ROX behaves roughly the same across the various
types of queries (2:2, 3:1 and 4:0) showing that it is highly adaptive to the
correlation and is robustly exploiting the existence of a selective correlation
between the joined documents. The classical plan, on the other hand, shows
strong variation, it frequently exceeds the optimum by an order of magnitude or
more, reaching even two orders of magnitude with high correlation measures in
group 3:1. On average, the classical plan exceeds the ROX results by a factor
3.4 in group 2:2, a factor 6 in group 3:1, and even a factor 7.9 in group 4:0.
The latter is rather unexpected, and obviously related to the unexpectedly
high correlation in the 4:0 group. In fact, although the 4 documents belong
to the same research area, the high correlation measure is due to the fact
that authors usually favor publishing in specific conferences in their area
of interest resulting in less visibility in the other conferences.

The smallest and largest equi-join order plans represent an approxima-
tion of the best and worst plans in the search space. Comparing the
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ROX and classical plans to these plans, we see that ROX is steadily picking
an execution plan that is close to optimal and invariably avoiding the bad
plans which the classical optimizer, in some cases, ends up picking.

As we have noted earlier, the performance of the classical plan is worse
for queries in group 3:1 with high correlation measures (it reaches 2 orders
of magnitude difference with the fastest plan). The same behavior is
noticeable for the largest equi-join order plan, and spans to group 2:2
as well. We have already explained that a higher correlation measure
indicates a larger dispersion in the selectivity of the equi-joins. This means
that the quality of the final plan is highly sensitive to the join ordering
choices. Therefore, any difference in the order between, on the one hand,
the operators in the classical and largest equi-join order plans, and, on the
other hand, the operators in the best shown plan results in the observed
steep degradation in the performance. This is not the case with lower
correlation measures since the impact of wrongly ordering the joins on the
performance of the final plan is not as high.

Taking a closer look at the plot in Figure we notice that for few
document combinations (around 140 out of 831), the ROX pure plan is
not the fastest among all the shown plans. For these 140 queries, ROX is
on average 30% slower than the fastest plotted plan. In the worst case,
the execution time of the ROX plan is 4 times slower. For 59% of the 140
queries, the fastest plan corresponds to the smallest equi-join order plan,
while the classical plan is the fastest for the rest 41%. We note that in
the latter case, the difference between the execution times of the classical
and smallest equi-join order plans is minimal. The reason behind the non-
optimal choices made by ROX is explained in Section|[5.5.8} and stems from
the inaccurate estimations returned by the adopted sampling methods.

Overall, we conclude that our ROX optimizer adapts to the correlations
effectively, and exploits the selective ones in the optimization process. It
has proven to be robust, reliable, and stable in avoiding bad plans and
picking execution plans that are (near-)optimal.

Step Placement

In this experiment, we assess the impact of the step placement among the
equi-joins on the quality of the execution plan, and the ability of ROX in
optimally placing the steps among the joins. Using the X100 scaled dataset,
we compare the ROX pure plan (excluding sampling cost) with the ROX
equi-join order plan. The latter shares the same ordering of equi-joins as
that of the pure plan chosen by ROX; however, the location of its XPath
step operators among the equi-joins corresponds to the fastest of the S,
JS, and S_J canonical step placements. We note that the step direction
between the two plans is also different. In the ROX equi-join order plan, all
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Document combinations: clustered by area distribution (2:2, 3:1, 4:0); ordered by ascending correlation

Figure 5.12 Normalized execution time of the ROX pure plan and the ROX equi-join order
plan.

steps author/text () are executed with a child axis, while the execution
direction of the steps in the ROX pure plan is optimized adaptively.

Figure illustrates the elapsed execution time of the two considered
plans normalized to the fastest plan. The red almost straight line cor-
responds to the execution time of ROX pure plan. The ROX equi-join
order plans shown with blue stars, are in general very close to the ROX
pure plans, but for certain document combinations where the XPath step
placement and direction matter, the performance is much worse. The ROX
equi-join order plans are on average 2 times slower than the ROX pure plan
times, while the latter reaches up to 1 order of magnitude faster execution
times for some queries. Therefore, we conclude that, for this set of tested
queries, the step placement optimization has less impact on the quality of the plan
than the equi-join optimization; however, for some of the queries, determining the
wrong order and direction of the steps results in a considerably slower performance.
Our ROX optimizer did not only manage detecting the correlation existing
between the authors in the different queried documents, but also succeeded
in determining the best position in which to insert the XPath steps among the
equi-joins, and the best execution direction of these steps.

Examining the reported execution times in Figure it appears that, for
few document combinations, the ROX pure plan is not the fastest plan
among the 2 tested plans. This means that in those cases, ROX makes
a non-optimal choice during the optimization process of the query. We
explain the origin behind these decisions in Section [5.5.8}
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Figure 5.13 Impact of Document Sizes on Sampling Overhead

Sampling Overhead at Different Document Scales

While focusing on the x100 scaled dataset in the previous experiments,
we now down-scale the dataset size to analyze the impact of the document
sizes on the performance of ROX, and more specifically the overhead
imposed by sampling. Although we expect that with smaller data sets, the
time spent on sampling will decrease (but less steep since the sample size
stays the same), we hypothesize that the overhead of sampling compared
to the query’s cost might grow more visible if the query becomes so cheap
to execute that the difference between the execution time of the best and
worst plans gets considerably smaller.

In this experiment, we again compare the ROX full run plan (including
sampling cost) with the ROX pure plan (excluding sampling cost) to the
plans corresponding to the smallest, largest, and classical equi-join order
classes on the same 831 document combinations. As before, the plan used
in the experiment for both the smallest and classical equi-join order classes
corresponds to the fastest canonical step placements (5], JS, S_]), while we
use the slowest for the largest equi-join order class. Figure shows the
average execution times of each of the plans normalized to the fastest of
the 5 using the three datasets: the original DBLP set (scale x1), as well as
scale x10 and scale x100.

We notice that the pure plan of ROX is close to optimal for all datasets
and the different correlation clusters. While the sampling overhead in
the full ROX run is a small portion of the plan’s cost in the case of the
x10 and x100 scaled datasets, it is equal to the pure plan’s execution
time in the x1 dataset, making the execution time of the ROX full run
slower than the largest equi-join order plan. This is caused by the fact
that the 4-way join query is so cheap to execute that any plan from the
search space would run sufficiently fast. Examining the plot, we in fact see
that the difference between the ROX pure plan and the largest equi-join
order plan is very small in the x1 dataset (contrary to the x10 and %100
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Figure 5.14 Impact of sample size and cutoff limit on sampling overhead.

datasets). We, therefore, conclude that, when using a fixed sample size, the
sampling overhead indeed does not reduce as fast as the execution time
when querying smaller document sizes. As any optimizer, the use of ROX
only pays off with larger document scales.

In fact, less time should have been spent on optimizing the query when
using the x1 dataset since the quality of the final execution plan is almost
insensitive to the decisions made by the optimizer. To achieve this, the
solution is to equip ROX with a module that adaptively determines the
amount of time to grant to the optimization steps. This adaptive decision
on the total amount of time to be spent on optimizing a query is considered
as future research and will be discussed further in Section [5.5.9]

5.5.7 Impact of Sample Size

In this last experiment, we analyze the impact of the sample size and cutoff
limit value on the sampling costs during the ROX query evaluation, and on
the quality of the produced ROX plan. We run ROX on the 831 document
combinations as before, using the X100 scale dataset and we vary the value
of the sample size and cutoff limit between 25, 100, and 400 tuples. We
note that all previous experiments were run with a sample size and a cutoff
limit value equal to 100.

With R denoting the execution time of the full ROX run (including
sampling) and r denoting the execution time excluding the sampling
cost, we define the relative sampling overhead in % as 100 % (R —r)/r.
Figure shows for each sampling size and cutoff limit value, the average
overhead per correlation cluster. As expected, the overhead increases with
the sample size and cutoff limit. The difference between 25 and 100 is
marginal, while samples of 400 tuples cause significantly more overhead
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Figure 5.15 Impact of sample size and cutoff limit on quality of produced plans.

than samples of 100 tuples. This observation supports our initial intuitive
choice of setting the sample size and the cutoff limit to the value 100 in the
previous experiments.

Figure shows the average execution time of the plans generated
by ROX per correlation cluster when using the three values sample size
and cutoff limit. The plotted times are normalized to the execution time
of the plan produced with a sample size = 100. We notice that the sample
size and cutoff limit value has almost no impact on the quality of the
plans chosen by ROX. The difference between the execution times of the 3
generated plans is on average around 2%. We conclude that ROX is able to
robustly find near-optimal plans even when using a smaller sample size.

5.5.8 Behind the Shortcomings of the Current Implementation of Sampling in ROX

In the experiments shown in Figure and Figure we discovered
few cases in which the plan chosen by ROX was not robustly near-optimal.
In this section we identify and describe the reasons behind the occurrence
of such cases.

We found two issues that cause the ROX optimizer to fail in finding the
optimal plan. The first is the implementation adopted for the cutoff-
sampling operation while the second is the use of non-representative
starting samples in the chain sampling process. We explain each of these
reasons next.

Cutoff-Sampling

In Section|[5.2] we have described the implementation of the cutoff-sampling
technique stressing that it is front-biased and might generate non-representative
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root root root root
ADBIS.xml INEX.xml SIGMOD.xml SIGIR .xml
T // T // T // T //
author author author author
pa T/ ® g/ T/ T/
text() < text() - RSO text() - ’.f ..... > text()

Figure 5.16 Join graph corresponding to the example DBLP query. Two edges are already
executed. The circled numbers denote the execution order. The current chain sampling
process is illustrated with arrows indicating the sampling direction. The labels on the edges
present the path to which a sampled edge belongs to.

Iteration | Cutoff limit | Path | Result size | # of distinct tuples | hr
P1 200 18 15
1 200 P2 128 27 0.8
p3 100 100 1
2 300 P4 0 0

Figure 5.17 Details about the 2 chain sampling iterations illustrated in the join graph of
Figure The current implementation of the cutoff-sampling technique results in the
introduction of a large amount of duplicates in the sampling result of path p1. This leads to
erroneously estimating the hit ratio of path p4 to be 0.

sampling results. The latter occurs when the first tuples in the outer
sampled table match with multiple tuples in the inner table, possibly pro-
ducing duplicates in the output. This results in a smaller number of distinct
tuples in the sampling output, hence decreasing the representativeness
of the sample. With these few distinct tuples used as input to the next
sampling operation, the chance is high that the hit ratio of the sampled
join is erroneously estimated to be extremely selective or even 0, which
might result in ROX picking the wrong sequence of joins for execution.
As an example of such a situation, we consider our DBLP query tem-
plate using the documents representing the conferences ADBIS, INEX,
SIGMOD, and SIGIR. After two optimization and execution steps, ROX
initiates a new chain sampling process which is illustrated in the query’s
join graph shown in Figure The circled numbers indicate the order of
execution of the already executed edges. Chain sampling begins its explor-
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ation from the vertex text () (corresponding to the document ADBIS). The
label on the edges indicates the path the edges belong to, and the arrows
indicate the direction of the chain sampling operations.

Figure enumerates the details concerning each of the two executed
chain sampling iterations. We note that more paths are sampled during
the second iteration, but we omit these from our description. Starting
chain sampling with a cutoff limit equal to 200 and a sample of size 100,
the ROX algorithm increases the cutoff limit by 100 at the end of each
sampling iteration. Among others, the table presents the result size and
the number of distinct tuples generated by each sampling operation. In
the first iteration, the result of size 200 generated from sampling the edge
in p; contains only 18 distinct tuples. In the second iteration, the path py is
created from the extension of p; with a new edge. When sampling the new
edge, none of the inner tuples join with the 18 distinct tuples generated by
p1, therefore, an empty result is returned. This is to be expected since with
a sample of size 18 as input, the chance to generate a non-empty result is
small. With a hit ratio erroneously estimated to be equal to 0, the path py
is chosen for execution, although it is the worst path to execute in the join
graph (note that the hit ratio of the first edge in path py is estimated to be
equal to 15).

Summarizing, the current implementation of the cutoff-sampling tech-
nique might introduce duplicate tuples in the result of a sampling op-
eration. If the latter occurs during a chain sampling process, then the
subsequent sampling operation might generate only few tuples, if any. As
a result, chain sampling will erroneously estimate the hit ratio of the newly
created path to be very selective or even equal to 0. This might lead the
optimizer to decide to execute a path that is in reality far from the best
path to execute. A potential solution to the front-biased cutoff-sampling
implementation has been presented in Section

Non-Representative Samples

To illustrate the second cause behind the possible shortcoming of ROX in
finding a good execution plan, we use the DBLP 4-way join query with
XML documents representing the conferences ICDE, WSDM, VLDB, and
ICDM. Figure illustrates the join graph corresponding to the query
after one optimization and execution step have been completed and a new
chain sampling iteration has been initiated. Chain sampling uses the vertex
text () (corresponding to the document WSDM.xm1) as the starting point of
exploration, and uses a sample of nodes S randomly picked from the vertex
as input to the sampling operations executed during the first iteration. The
figure shows three sampling iterations, and in each iteration a new path is
created by extending the path created during the previous iteration with a
newly sampled edge. At the end of the third sampling iteration, the path ps3
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root root root root
ICDE.xml WSDM.xml VLDB.xml ICDM.xml
T/ / T/ / T // T/ /
author author author author
T/ ® E/ T/ T/
text() <p+ text() e T text() - p: o> text()

Figure 5.18 Join graph corresponding to the example DBLP query. One edge is already
executed as indicated with the circled number. The current chain sampling process is
partially illustrated. The labels on the sampled edges denote the path to which the edge
belongs, and the arrows represent the sampling direction.

Iteration | Path | Estimated hit ratio | Real hit ratio

1 p1 0.32 1.5
2 P2 0.04 13.18
3 p3 0.16 19.5

Figure 5.19 Details about the chain sampling iterations illustrated in the join graph of
Figure[5.18] Using a non representative sample table as input to the chain sampling process
results in an estimated hit ratio that is far off the real value. The error in the estimation is then
propagated and accumulated as chain sampling progresses, leading to bad paths chosen
for execution.

is found superior and is returned for execution. Note that only a selection
of the sampled paths is depicted in the figure. Figure shows the
estimated hit ratio of the sampled paths, along with the real hit ratio. We
notice that there exists a considerable gap between the estimated and real
values of the hit ratio of path p;. The reason behind this difference is that
the used initial sample S happens to be in this case, not a representative
sample of the nodes associated with the starting vertex text (). The error
in the estimation propagates to the newly created paths. In fact, during the
second chain sampling iteration, the error accumulates and grows to two
orders of magnitude off the real values. This might lead the optimizer to
make wrong decisions and choose the execution of a path, in this case p3,
that appears to be highly selective but is in reality far from the best (note
the actual high hit ratio of the path p3).
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Two solutions can be imagined to the potential problem of non-representative

samples:

1. The first is to replace our primitive sampling techniques with more
advanced and robust ones which return more representative sample
sets. A good survey on sampling techniques can be found in [100].

2. A second more efficient solution is to observe, while executing the
chosen path, the actual hit ratio of the edges. If the noted values do
not match the estimated values, then the execution is stopped and
a new optimization step of ROX is initiated. This latter solution is
comparable to the “re-optimization” approaches proposed in [79, [91],
and is left as possible future extension to ROX. We discuss the
applicability of such a technique in ROX in Chapter [7}

Balancing Between the Optimization and Execution Times of a Query

As we have seen in Section for certain queries that are very cheap
to execute and therefore require little or no optimization, the sampling
overhead might reach a large percentage of the execution time of the query.
ROX, in its current form, does not attempt to strike a balance between the
optimization time and the execution time of a query, but since ROX moves
optimization to run-time, it becomes possible to define a good balance
between the amount of time to spend on both optimizing and executing a
query.

Static query optimization always runs the risk of spending too much
time on optimization, such that it would have been faster to go with a
maybe slightly worse plan that was found early, or spending too little time
on optimization failing to avoid a very bad plan. To overcome the above,
the optimizer should, during the search space exploration, decide at every
point in time whether to proceed with optimizing the query or stop and
return for execution the best plan found so far. Making such a decision
at compile-time is not trivial, as it requires a good prediction scheme that
estimates the potential running time of the query.

Our ROX method of intertwining query optimization and evaluation
finally provides a way to balance resources spent on query optimization
and evaluation. ROX can adaptively decide the amount of time to invest
on optimization by estimating the potential execution cost of the query
based on the result size and execution time of the joins observed through
sampling. If, on the one hand, the estimated execution cost is small, then
the amount of time to spend on optimization should be kept limited. If, on
the other hand, the optimization time spent so far reaches a considerable
percentage of the estimated execution cost, then optimization should be
stopped and the current plan can be returned for execution.
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To adopt the above strategy, the following questions need to be first
addressed. For a given query Q:
1. How can ROX determine the current plan corresponding to Q and
how can it estimate its execution cost?

2. How to determine whether the execution cost of the current plan is
satisfyingly fast, such that optimization can be stopped and the plan
returned for execution?

3. What is the acceptable time to spend on optimizing the query Q?

The current plan of a given query Q is the plan that ROX would return for
execution if it would decide for some reason to stop the optimization of Q.
The best possible plan which is easily determined is a plan which orders
the edges in the join graph in a greedy manner. This translates to a plan
in which the edge with the smallest weight is executed first, followed by
the edge with the second smallest weight, and so on until all edges are
executed.

A naive approach to estimate the cost of the current plan is to estimate
the execution cost of each individual edge, to extrapolate the costs, and
then compute the sum. The estimation of the execution time of every edge
can be performed as part of the weight computation process. The cost of
the current plan is then equal to the sum of the execution time of the first
edge in the plan and the extrapolated execution time of the subsequent
edges. If the join hit ratio of the first edge in the plan is o.5, then the
execution time of the second edge in the plan is linearly extrapolated to
half its originally estimated cost. Similarly, the execution time of the third
edge in the plan is linearly extrapolated using the join hit ratio of the first
two operators, and so on.

After each execution step in ROX, some edges in the graph are executed
and the knowledge in the join graph is updated. Consequently the current
plan is redefined: it consists of the already executed edges in the order of
execution determined by ROX, while the unexecuted edges are ordered in
a greedy manner. The cost of the plan is accordingly updated to the sum
of the time spent so far on the execution, with the execution time of the
first unexecuted edge in the plan, and the linearly extrapolated execution
time of the other unexecuted edges in the plan.

To position the current plan in the search space of plans, the cost of a
possible bad plan needs to be determined. To estimate the cost of a
possible bad plan, a simple technique is to estimate the cost of the plan in
which the edges in the join graph are ordered in the worst greedy manner.
If the execution costs of the current plan and the bad plan are close, then it
might either be the case that the query is considerably cheap such that the
difference between the optimal and worse plan is small, or that the current
plan is far from optimal and optimization should proceed. In both cases,
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ROX will spend some time on optimization to improve the current plan
while keeping in mind that the cost of the current plan and the time spent
on optimization should be and remain far below the execution time of the
bad plan.

Knowing the execution cost of the current plan C, and the time O
spent so far by ROX on optimization, ROX can then decide if optimization
should proceed or stop based on the following formula: O = x% x C. If
the optimization cost of the query reaches a certain percentage x of the
estimated execution time of the current plan, then optimization should be
stopped. It remains to determine the best value of the percentage x. This
is left for future work.

Conclusion

In this chapter, we have given a brief description of MonetDB/XQuery, the
database backend on top of which the ROX prototype is implemented. We
have described the storage structure in MonetDB, the staircase join operator,
and the type of indexes supported by MonetDB. We have also explained
the implementation of the sampling and cutoff-sampling techniques used
by ROX. We mention that the sampling techniques and the introduced
cutoff-sampling approach implemented in the ROX prototype are very
primitive. More advanced and robust techniques can certainly be adopted,
and will most probably improve the results currently achieved by ROX. Our
decision to stick to these basic techniques stems from our wish to test and
prove the robustness of ROX, even under primitive conditions. Although
ROX is implemented and tested in the context of MonetDB/XQuery, we
emphasize that the ideas in ROX can be used with other systems and
do not require the presence of the structural staircase join operator nor
indexes of MonetDB. In fact, the applicability of ROX depends only on
the existence of efficient and cheap sampling techniques that satisfy the
zero-investment property.

In the conducted experiments, ROX was tested using more than 8oo queries
in the context of two documents: XMark, a synthetic document used to
benchmark XML database systems, and DBLP, a document containing real-
life data. The following points were made while observing the experimental
results:

1. Robustness of ROX: Even when using primitive sampling approaches
and a front-biased cutoff-sampling technique, ROX has proven to be
a robust optimizer: it successfully and consistently picked execution
plans that are (near-)optimal, always avoiding the bad ones, even
with smaller sample sizes. On the other hand, the considered classical
compile-time optimizer has shown strong variations in the quality of
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the chosen plans, reaching, for some queries two orders of magnitude
slower performance. For around 84% of the tested queries, ROX was
capable of finding an optimal execution plan. For the other 16%,
the optimal plan is missed due to erroneous estimations returned by
the currently adopted primitive sampling techniques and the front-
biased cutoff-sampling approach. Solutions have been proposed to
the above two problems. For the 16% cases, the experiments have
shown that the ROX plan is on average only 30% slower than the
fastest tested plan, and still far from the worst plan.

2. Seamless handling of XPath steps and relational joins: Although
the step placement optimization in the context of the tested DBLP
queries has less impact on the quality of the plan than the equi-join
optimization, ROX was capable of defining a good ordering of the
relational joins in the join graph as well as placing the XPath steps in
strategic locations in the execution plan. Moreover, ROX dynamically
determined the best execution direction of both types of joins. We
stress again that the possibility to optimize several join graphs in a
single plan allows ROX to handle the full XQuery language.

3. Detection of correlation: We have mentioned in Chapter [4] that
our chain-sampling technique provides the first generic and robust
method to deal with any type of correlated data. In fact, the ex-
periments have proven that ROX is indeed capable of adaptively
detecting the correlations existing among the queried data, and of
exploiting it to generate good execution plans.

4. Efficiency of ROX: Moving optimization to run-time comes with the
challenge of keeping resource usage under control. The experiments
have shown that the sampling overhead imposed by the run-time
optimization in ROX is kept limited, and is on average around 27%
of the full execution time for a sample size equal to 100.

As a summary, the experiments have shown that ROX, our autonomous run-
time optimizer for XQueries, is robust and efficient, capable of overcoming
the challenges that classical compile-time optimizers are still facing.
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ROX-sampled: Towards a Pipelined
Execution

Basically, ROX consists of iteratively alternating optimization phases with
execution steps in which complete tables are joined and intermediate res-
ults are fully materialized. Noticeably the execution of operators using full
tables and the materialization of full results are behind the robustness of
ROX, but they also restrict ROX to systems that support full materializa-
tion, and hence exclude systems with a pipelined execution scheme from
adopting the ROX approach.

In a pipelined system, a plan is executed iteratively. In each iteration,
an operator processes a small set of data and then pipes the result to the
next operator in the plan. This means that only small amounts of data are
processed and kept in memory at each iteration. As each execution step
in ROX processes complete tables and materializes full results, it becomes
impossible to directly apply ROX in a pipelined system.

Since most of the existing database management systems, e.g. Oracle
RDBMS, IBM DBz, Microsoft SQL server, MySQL, PostgreSQL, etc., adopt
a pipelined execution style, it is important to develop a variant of ROX that
is suitable for these systems. In this chapter, we first present this variant of
ROX in which the execution of operators with full tables is not required
reducing the amount of materialized intermediate results. This is followed
by a detailed description of the algorithm, and an experimental section
that compares the evaluation of the new variant of ROX to ROX with full
materialization. Finally, we take a look at the different requirements that a
pipelined system should support to be able to efficiently implement ROX.

6.1 General Description of ROX-sampled

This section introduces ROX-sampled, a variant of ROX that is suited for
systems with a pipelined execution style. The main difference between
ROX-sampled and ROX-full is in their execution phases. In ROX-full,
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execution steps manipulate full tables, while in ROX-sampled sample tables
are processed. This difference impacts the types of tables associated with
vertices, and the way edges are sampled and executed in ROX-sampled.
This section is structured as follows:

¢ A general description of ROX-sampled is given in Section

¢ The tables associated to vertices in a join graph are introduced in
Section

¢ The methods used by ROX-sampled to execute and sample edges are

explained in Section and Section

* A special case of executing and sampling edges with two executed
vertices is discussed in Section and Section

Global Overview of ROX-sampled

One of the main reasons behind the robustness of ROX, referred to here-
after as ROX-full, is that every optimization phase is followed by an
execution step which implements the decisions made by the optimizer,
and materializes the full intermediate results. This gives the next optimiz-
ation phase the benefit of using the up-to-date intermediates to retrieve
accurate information about data characteristics, which in turn allows for
an accurate estimation of cardinalities and the detection of correlations.
But this strategy is not suitable for pipelined systems in which the execu-
tion of operators using full tables and the materialization of the complete
intermediate result is avoided as much as possible.

To generalize the ROX approach to systems with a pipelined execution,
we modify ROX-full into a new variant which we name ROX-sampled.
ROX-sampled runs the ROX algorithm using only data samples while recording
the decisions made during each optimization phase, and when the whole join graph
is optimized, it executes the saved decisions using the full tables.

Figure [6.1]illustrates the two variants of ROX. ROX-sampled follows
the same steps as ROX-full, with the main difference that only samples are
used throughout the whole algorithm. Therefore, unlike ROX-full, where
the optimization phase works with a data sample while the execution
phase processes full tables, both the optimization and execution phases
of ROX-sampled manipulate data samples. This means that during the
execution phases of ROX-sampled, operators are sampled instead of being
executed with full tables. We note that the size of the sample sets used
during the execution phases of ROX-sampled might be larger than those
used during the optimization phases. We also stress that although an
operator op in ROX-sampled is sampled during an execution phase, we still
refer to the process as executing op. Therefore, when during an execution
phase, the term executing the operator op is used, it in fact means that op is
being sampled (i.e. not executed with full tables).
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Figure 6.1 An illustration of the steps of ROX-full and ROX-sampled. Both techniques
define the execution plan iteratively, but each execution phase in ROX-full processes full
tables while execution phases in ROX-sampled process only data samples. As a result, in
ROX-full, the plan is defined and executed incrementally, and in ROX-sampled, the execution
plan is first entirely defined and then evaluated.

So, in ROX-sampled, every optimization phase decides which operators
should be executed, and the subsequent execution phase executes these
operators using data samples instead of full tables. The execution decisions
made during each optimization phase are recorded. These decisions make up the
final execution plan. When ROX-sampled completes the optimization of the
whole join graph, i.e. when the execution order of each operator in the join
graph has been determined, the final execution plan is executed with the
full tables and the result is returned for subsequent processing. As shown
in Figure both variants construct their execution plans incrementally;
however, ROX-full executes directly each operator added to the plan, while
ROX-sampled executes the whole plan once it is completely defined.

The fact that the execution phases of ROX-sampled process data samples
instead of full tables results in intermediate results of a considerably smal-
ler size. By limiting the number of tuples accessed from base tables,
processed and materialized at every execution step, it becomes possible to
apply the ROX idea to pipelined systems. Accessing fewer tuples from base
tables, and manipulating less data throughout the algorithm allows the use
of ROX in pipelined systems, but might also increase the risk of construct-
ing bad execution plans. In fact, our proposed ROX-sampled approach
raises some questions. Does the use of only small samples during both
the optimization and execution steps jeopardize the robustness of the al-
gorithm? Will the small generated intermediates be representative enough
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to detect data correlations? As will become clear later in Section
and Section ROX-sampled needs, in some situations, to perform
redundant operations. Will this reduce the efficiency of ROX-sampled?
These concerns will be addressed in Section [6.3| which presents the results
of a set of experiments conducted to assess the quality of the execution
plans chosen by ROX-sampled, and to investigate the performance and
efficiency of the new algorithm.

6.1.2 Tables Associated With a Vertex

As we have seen in Chapter[4} in ROX-full two types of tables are associated
with each vertex in the join graph. We redescribe these below.
For a given vertex v in a ROX-full join graph, we denoted:

e TBL(v) as the full table containing all XML nodes corresponding to
the vertex v. TBL(v) is used during the execution phases of ROX-full
as input to operators. After the execution of an edge, the content of
TBL(v) is updated with the tuples in the generated result.

® SMPL(v) as a sample randomly chosen from TBL(v). SMPL(v) is used
as input to the sampling operations during the optimization phases
of ROX-full.
In the case of ROX-sampled, three types of tables are associated with each
vertex v in the join graph:
* TBL(v) is the full table containing all XML nodes corresponding to
the vertex v.

e ESMPL(v) denotes the execution-sample table of v. It is used during
the execution phases of ROX-sampled as input to operators. Initially,
ESMPL(v) contains a random sample picked from TBL(v), and later
it consists of the output of the execution operations. Therefore, after
each execution, the content of the table ESMPL(v) is updated with
the tuples in the generated result.

® SMPL(v) is a sample randomly chosen from ESMPL(v). SMPL(v) is
used as input to the sampling operations during the optimization phases
of ROX-sampled.

Note that although the execution-sample table ESMPL(v) and the sample
table SMPL(v) are both data samples, they are in fact two different physical
tables with two main differences:
e ESMPL(v) is used during the execution phases of ROX-sampled,
while SMPL(v) is used during the optimization phases of the al-
gorithm.

e The size of ESMPL(v) is slightly bigger than SMPL(v). We choose
to increase the number of tuples in ESMPL(v) to allow for more
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Figure 6.2 An illustration of the types of tables associated with vertices in a ROX-sampled
join graph. The initialized full, execution-sample, and sample tables associated with the
vertices @ and b are shown. For a given vertex v, the full table TBL(v) contains all XML
nodes in the document that correspond to . The execution-sample table ESMPL(v) is
initialized to a sample randomly chosen from the full table TBL(v), while the sample table
SMPL(v) consists of a random sample picked from ESMPL(v).

representative samples, and for the generation of larger results. The
intuition behind this is to counteract the risk of generating estimation
errors through sampling, and the propagation of these errors to
subsequent execution steps. The size of SMPL(v) is not increased to
keep the sampling overhead limited.

Example 6.1.1. The above definitions are illustrated in Figure [6.2|in which
a join graph is depicted along with the full, execution-sample, and sample
tables of the two vertices a and b. The full table TBL(a) (respectively,
TBL(b)) contains all the XML nodes in the document corresponding to the
vertex a (respectively, b). Each tuple in the tables represents an XML node.
The subscripts represent the relations between XML nodes belonging to
different tables, i.e. the tuples represented by a; match with the tuples
designated by b;. The execution-sample table ESMPL(a) (respectively,
ESMPL(b)) is initialized to a sample randomly picked from the full table
TBL(a) (respectively, TBL(b)), and the sample table SMPL(a) (respectively,
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Tables after executing edge (a, b)

Figure 6.3 The full and execution-sample tables associated with the vertices a and b after
edge (a,b) has been executed. The execution step uses the table ESMPL(a) as context
set for the execution of the step operator. The execution-sample tables of 4 and b are
updated to reflect the execution result, while the data in the full tables is not modified.

SMPL(b)) is initialized to a random sample chosen from the table ESMPL(a)
(respectively, ESMPL(b)).

Content of Execution-Sample Tables after the Execution of Edges

In this section, we take a closer look at execution-sample tables, more
specifically their content and use in execution phases of ROX-sampled.

Example 6.1.2. We reconsider the join graph in Figure[6.2} and we suppose
that the optimization phase of ROX-sampled decides to execute the edge
(a,b). The resulting join graph and the content of the full and execution-
sample tables of the two vertices a and b after the execution of (a,b) is
depicted in Figure Since execution phases in ROX-sampled consist
of sampling operators, they therefore manipulate and update execution-
sample tables instead of full tables. The arrow in the join graph indicates
the execution direction, therefore the table ESMPL(a) - with the content
shown in Figure - is used as the context set for the executed step
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operator. Note that the execution sample table ESMPL(b) is not used for
the execution of the edge. In fact, as we will explain in the following
section, the edge is executed by matching the execution sample table
ESMPL(a) with the full table TBL(b). After the execution of the edge, the
tables ESMPL(a) and ESMPL(b) are updated to the result of the execution
(as shown in Figure [6.3). We note that the data in the full tables TBL(a)
and TBL(b) is not updated. In fact, in ROX-sampled, the content of full
tables is never modified.

Definition 6.1.3. (refined in Definition [6.1.4) The content of the execution-
sample table ESMPL(v) of a vertex v is defined as:
¢ a random sample of tuples chosen from the full table TBL(U), ifovis
not an executed vertex.

¢ the tuples that have matched all the executed edges of v, if v is an
executed vertex.

We recall the definition of an executed vertex presented in Section
An executed vertex is a vertex that has at least one of its edges already
executed: v is an executed vertex if |edges™ (v)| > 0.

Continuation of Example One optimization step further, the ROX-
sampled algorithm decides to execute the edge (b,c). The full table and
the execution-sample table of the vertex c are illustrated in Figure
Since c is not an executed vertex, ESMPL(c) contains a random sample
chosen from TBL(c). Figure shows the join graph after the edge (b,c)
is executed by matching the tables ESMPL(b) and TBL(c). The execution-
sample tables of b and c are updated to the result of the execution. Note
that the content of ESMPL(a) is also updated. Therefore, the content of
ESMPL(a) reflects the execution result of not only the executed edges
outgoing from a, but also the execution result of the chains of executed
edges branching from a: the tuples in ESMPL(a) are those random tuples
that have matched the execution of both edges (a,b) and (b, ¢).

We therefore refine our previous definition (Definition [6.1.3) of the content
of the execution-sample table of a vertex v.

Definition 6.1.4. The content of the execution-sample table of a vertex v is
defined as:

¢ arandom sample of tuples chosen from the full table TBL(v), if v is
not an executed vertex.

e the tuples that have matched the chains of executed edges branching
from v, if v is an executed vertex.

Briefly said, the execution-sample tables in ROX-sampled have the same
role as full tables have in ROX-full, with the main difference that the size
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a The join graph of Figure[6.3|after the b The join graph after the execution of edge (b, c). The
execution of edge (4, b). The full table and execution-sample tables of the vertices a, b, and ¢ are
the execution-sample table associated with the shown. The edge (b, ¢) is executed using as context set
vertex c are shown. Since vertex c is not an the execution-sample table ESMPL(b). Note that the
executed vertex, its execution-sample table is content of ESMPL(a) is also updated to the result of
a random set of tuples chosen from TBL(c). the execution of (b, ¢).

Figure 6.4 The execution-sample table of an executed vertex v contains all the tuples that
match the previously executed chains of edges branching from .

of execution-sample tables is considerably smaller than that of full tables.
We stress that in ROX-sampled, full tables are never modified during the
complete algorithm.

The Execution of Edges

In this section, we describe the method used by ROX-sampled to execute
a given edge in the join graph. We first explain the general case, then
focus in the next section on the special case of executing an edge with two
executed vertices.

Let us take a closer look at Figure more specifically at the result of
the execution of the edge (a,b). We note that the edge was not executed
as a join between the execution-sample tables ESMPL(a) and ESMPL(b),
but as a join between ESMPL(a) and TBL(b) (the 3 tables are shown in Fig-
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a Executing edge (a, b) of the join graph in Figureusing as input the execution-sample tables
ESMPL(a) and ESMPL(b).
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b Executing edge (u, b) of the join graph in Figureusing as input the execution-sample table
ESMPL(a) and the full table TBL(b).

Figure 6.5 Two ways to execute edge (a, b) of the join graph in Figure

ure[6.2). If the edge was executed by matching the execution-sample tables
ESMPL(a) and ESMPL(b), the resulting tables would have the content
shown in Figure

We have already explained in Section that joining two samples,
each picked from a given table, does not result in a representative sample
of the output of the join of the two tables. In other words, >y (R) > >¢(T)
# >rmar(R < T). Since the tables ESMPL(a) and ESMPL(b) are both
sample sets, the edge (a, b) should not be executed as a join between the
execution-sample tables ESMPL(a) and ESMPL(b).

Since the execution of an edge in ROX-sampled consists of merely
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a sampling operation, the same technique employed to sample a join
operator in ROX-full is used to execute an edge in ROX-sampled. Sampling
an operator is performed by joining a sample set chosen from one of the
operands with the full table of the other operand. Therefore, the edge (4, b)
is executed using as input the execution-sample table ESMPL(a) and a step
operator into the full table TBL(b). The matching of the tables is illustrated
in Figure [6.5b] The same approach is used to execute the edge (b,¢) in
Figure[6.4b} the edge is executed with as context set the execution-sample
table ESMPL(b) and a step operator into the full table TBL(c).

Executing an Edge with Two Executed Vertices

In this section, we elaborate on the method used by ROX-sampled to
execute an edge with two executed vertices. We will first explain, using an
example, why the execution approach we have described in the previous
section is not suitable to execute edges with two executed vertices. Then,
we present the technique used by ROX-sampled to execute this kind of
edges.

We consider the join graph shown in Figure in which the edges
(a,b) and (c,d) are already executed. The arrows indicate the execution
direction of the edges. In the figure, the execution-sample tables of the
vertices b and c are depicted, along with the full tables of 2 and b. The
ROX-sampled algorithm decides now to execute the edge (b,c), using
the vertex c as the context set of the execution. The previously described
solution says that the execution-sample table ESMPL(c) should be joined
with the full table TBL(b). The result of such an execution is shown in
Figure

Since the content of full tables in ROX-sampled is never modified,
TBL(b) consists of those XML nodes corresponding to the vertex b. There-
fore, the join between ESMPL(c) and TBL(b) results in all the tuples that
match the previously executed edge (c,d) and the edge (b, c). This means
that the performed execution of the edge (b, ¢) did not take into account
the previously executed edge (a,b). In fact, since b is an executed vertex,
the content of its execution-sample table ESMPL(b) after the execution of
(b, c) should consist of all the tuples that match the chains of previously
executed edges branching from b, namely (a,b), (b,c), and (c,d). If we
examine the content of the full table TBL(a) shown in Figure and
that of the execution-sample table ESMPL(b) in Figure[6.6b] we notice that
some of the b tuples, more specifically b3, by, and b1, do not have a match
in TBL(a) and would not make it to the result if the executed step (a,b)
would have been taken into account.

We conclude that, since the execution-sample table of an executed
vertex consists of those tuples that match the chains of executed edges
branching from the vertex, the method described in the previous section




General Description of ROX-sampled

Result of executing edge
(b, ¢) by joining
48> ) O—— c @1

Join graph

ESMPL(b) ESMPL(c)

TBL(a) TBL(b) ESMPL(b) ESMPL(c) b, <
a by by 2 by 2
a by by C3 b3 C3
ap by by C3 b3 C3
ap b3 by C3 b3 C3
ap by by G5 bz C3
ay by bg C9 bs C3
as bg bg C9 by C3
ag bg byo 12 by C9
ag by c12 by C9
aio byg bip 12
an bip bip 12
a Join graph where edges (4, b) and (c, d) are executed. The full b Executing edge (b, ¢) by matching
tables associated with vertices 2 and b are shown, along with the ESMPL(c), the execution-sample
execution-sample tables of vertices b and c. table of ¢, with TBL(b), the full table

of b. The shown tables represent the
result of the matching.

Figure 6.6 Join graph in which the edge (b, C) is an edge with two executed vertices. The
edge (b, ¢) is executed by joining ESMPL(c) with TBL(b), and the result of the execution
is shown. The execution ignores the previously executed chains of edges branching from b,
namely (a,b).

is not suitable when executing an edge with two executed vertices, as it
results in ignoring the chains of previously executed edges branching from
one of the edge’s vertices.

Problem statement - The problem we are solving in this section is the
following: given an edge e = (v,v') where v and v’ are executed vertices,
how should ROX-sampled execute e to generate a reliable sampled result
which reflects the real data characteristics, taking into account the chains
of all previously executed edges branching from the vertices of e.

The execution depicted in the example shown in Figure [6.6|is incomplete
since it did not take into account the previously executed edge (a,b), and
therefore information about the tuples that have matched (a,b) is lost. To
take the execution result of (4, b) into account, we propose to re-execute the

173



6. ROX-sampled: Towards a Pipelined Execution

174

Join graph

by
ajp
b, 3
bs al ESMPL(a) ESMPL(b) ESMPL(c)
bs - a2 Do | 2|
bs a2 ay b, )
bs 2 B b | =
: w = & & fa
bs - a2 |bs | 2|
bg 8 a by 2
ag — — —
bg
b aio
12 an
b1,
Matching ESMPL(b) and TBL(a) The resulting execution-sample tables

Figure 6.7 Completing the execution of edge (b, ¢) by re-executing the edge (a,b). After
having executed the edge (b, ¢), edge (a,b) is executed using as input the execution-
sample table ESMPL(b) and the full table TBL (). The content of the execution-sample
tables ESMPL(a), ESMPL(b), and ESMPL(c) is updated with the result of the execu-
tion. The three execution-sample tables contain the tuples that have matched the execution
of the edges (a,b), (b,c), and (¢, d).

edge (a,b) using as input the execution-sample table ESMPL(b) generated
from the execution of (b,c). This solution is illustrated in Figure
After executing the edge (b,c), edge (a,b) is re-executed by joining the
execution-sample table ESMPL(b) with the full table TBL(a). The resulting
execution-sample tables ESMPL(a), ESMPL(b), and ESMPL(c) now consist
of the tuples that match the edges (a,b), (b,c), and (c,d).

Solution - To execute an edge ¢ = (v,v') with two executed vertices,
we first execute e by joining the execution-sample table of one of the
vertices, say v, with the full table TBL(¢v'). We then re-execute the chains of
previously executed edges branching from v'. In other words, all edges in
edges*(v') are re-executed.

The decision which vertex (v or v’) of the edge e to use as right operand is
made by comparing the number of executed edges in the branches of each
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a A join graph with 2 unexecuted edges and 7 executed edges.
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b The join graph illustrating the execution of the edge ¢ = (vl,vz). The edges are
labeled with the order of execution, and the arrows represent the execution direction
(i.e. the vertex, the execution-sample table of which is used as left operand of the
execution). First, edge (vl, vz) is executed by joining the execution-sample table
ESMPL(v7) and the full table TBL(v;). Then the edges in edges*(v2) are
consecutively executed in a depth-first manner, with each execution using as input the
sample table generated by the previous evaluation.

P4 + 1~ P3 q4

Figure 6.8 An example of executing an edge with two executed vertices.

of v and ¢/, i.e. by comparing the number of edges in the two sets edges*(v)
and edges* (v'). To keep the cost of re-execution limited, the right operand
is chosen to be the vertex v with the smallest number of executed edges. A
more detailed description of the method used to make the choice is given
in Section

Example 6.1.5. We illustrate now the proposed solution using the join
graph of Figure We suppose that the current optimization phase
of ROX decides to execute the edge e = (v1,v2). Since both v; and v
are executed vertices, the execution of e will require the re-execution of
the chains of executed edges branching from one of its vertices. Since
ledges™ (v1)| > |edges*(vy)|, the vertex v; is chosen to be the right operand
of the execution. Figure illustrates the execution process. Edges
are executed in a depth-first manner, and are labeled with the execution
order, while the arrows represent the execution direction (i.e. the vertex
that is used as left operand in the execution). First, the edge e is executed
using as input the execution-sample table ESMPL(v7) and the full table
TBL(vp). Then all the edges in edges*(v;) are re-executed consecutively,
in a depth-first manner. Each execution operation uses as left input the
execution-sample table generated by the previous execution. For instance,
the edge (v2,41) is re-executed by joining the table ESMPL(v;) generated
by the execution of (v1,v;) with the full table TBL(q1). This gives ROX
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the ability to capture the relation and the existing correlations between
the different vertices. It also allows to correctly handle the re-execution of
possible cycles in the graph.

One question to ask concerns the amount of overhead incurred by the
re-execution of edges? We note that these re-executions consist of cutoff-
sampled operations which use execution-sample tables as input. The latter
are originally a small set of tuples sampled from the full tables, and their
size is kept small through cutoff-sampling throughout the complete ROX-
sampled algorithm. Therefore, we believe that all the extra re-executions
will not add a considerable amount of overhead. We investigate this matter
in the experiments presented in Section

Differences Between the Execution and Sampling of Edges

Since edges are sampled in both the execution and optimization phases of
ROX-sampled, one may wonder if the sampling of an edge e performed
during an optimization phase differs from the sampling of e during an
execution phase.

The first difference between the two sampling operations is that the one
performed during the execution phase uses as left operand an execution-
sample table, while during optimization the left operand consists of a
sample table. We have already mentioned in Section [6.1.2] that the size of
execution-sample tables is larger than that of sample tables, to allow for
more representative data samples and for the generation of more tuples
to counteract the possible creation and propagation of estimation errors
during sampling. Therefore, the value of the cutoff limit used to sample
edges during execution phases is chosen to be bigger than the one used
during the optimization phases. The intuition behind our choice is to
allow for the generation of a larger number of tuples, in an attempt to
keep the data in the execution-sample tables a representative sample of the
full result of the executed joins, such that the chance of producing future
estimations errors is kept small. However, the catch is that the generation of
more tuples increases the run-time overhead. In the experiments presented
in this Section[6.3} we investigate the impact of increasing the cutoff limit
on both the quality of the selected plan and the run-time overhead.

The execution and sampling of an edge e = (v1,v;) consists therefore
of respectively the following two operations:

> (op(e, ESMPL(vq), TBL(v;))) during an execution phase
>+ (op(e, SMPL(v1), TBL(v;))) during an optimization phase

As we have stressed in Note and explained in Section [5.2} although
the execution and sampling operations are represented as a join between
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a sample table and a full table, the physical implementation of these two
operations might be performed with different strategies, e.g. an index-
based join. This means that the pre-materialization of the full table TBL(v;)
is not a requirement to carry out the sampling and execution of the edge e.

6.1.6 Sampling an Edge With Two Executed Vertices

In Section we have described the method used by ROX-sampled to
execute an edge with two executed vertices. The same approach is used to
sample an edge with two executed vertices.

Therefore, to sample an edge ¢ = (v,v') where v and v’ are executed

vertices, the following steps are applied:

e First the sizes of the two sets edges™ (v) and edges* (v') are compared
to determine the vertex to use as the left operand of the sampling
operation (i.e. the vertex with the largest number of executed edges
in its branches). Let v be the chosen vertex.

¢ The sample table of the vertex v is joined with the full table T(v').

e All the edges in the set edges*(v') are re-sampled. Each of the
sampling operations uses as input the output generated by the previ-
ous sampling operation.

The objective of sampling an edge ¢ is to estimate the cardinality of the
output of the operator associated to e. Therefore, while performing the
above sampling operations, ROX-sampled keeps track of the join hit ratio
of each of the sampled edges. Using the estimated hit ratios, ROX sampled
can then compute the hit ratio of the whole set of sampled edges, and
subsequently the cardinality of the edge e using the technique described in

Section

Example 6.1.6. Figure depicts a join graph in which edges (a,b) and
(c,d) are executed. The full tables corresponding to the vertices a and b, and
the sample table associated to c are presented. Suppose that the current op-
timization phase of ROX-sampled needs to sample the edge (b, c) to estim-
ate its weight. Figure shows the join tree, the result size of which is to
be estimated by ROX-sampled. Two operators have already been executed:
(TBL(a) O TBL(b)) and (TBL(d)=dTBL(c)), and ROX-sampled needs to
estimate the cardinality of the expression ((T(a)=AT(b))=2 (T(d)=IT(c))).
Since edge (b, c) is an edge with two executed vertices, ROX-sampled first
compares the size of the sets edges* (b) and edges*(c). Since both sets are
equal in size, it does not matter which vertex is used as the right oper-
and. ROX-sampled chooses the vertex b, and the edge (b, c) is sampled by
matching the sample table SMPL(c) with the full table TBL(b). The result
is shown in Figure The join hit ratio of the edge (b, c) is estimated
to be 1. The join tree shown in Figure depicts the plan, the result
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a Join graph where edges (4, b) and (¢, d) b The join tree depicting the plan, the result size of
are executed. The full tables associated to which is to be estimated by ROX-sampled. Two step
vertices @ and b are shown, along with the operators have already been executed, and
sample table of vertex c. ROX-sampled needs to estimate the cardinality of the

step operator that matches the result of the two
executed operators.

Figure 6.9 A join graph with 2 executed edges (a,b) and (¢, d). ROX-sample needs to
sample the edge (b, c) to estimate its cardinality. The join tree illustrates the plan, the result
size of which is to be estimated by ROX-sampled.

size of which can now be computed using the estimated hit ratio. It can be
noticed that the depicted plan does not include the previously executed
edges branching from b, and therefore the estimated size does not take into
account the fact that the edge (a,b) has already been executed. The next
step of the sampling process is to re-sample the edges in edges* (b). The
edge (a,b) is re-sampled by matching the sample table SMPL(b) with the
full table TBL(a). Figure shows the result of the sampling, and the
join tree, the result size of which can now be estimated by ROX-sampled.
The executed edge (a,b) is now included in the plan. In fact, this plan is
equivalent to the join tree presented in Figure The result size of the
sampling is equal to 16, and therefore the join hit ratio is estimated to be 4.
This example shows the importance of re-sampling the edges in edges™ (b).
By doing so, ROX-sampled estimates the size of the edge (b, ¢) while taking
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a The result of sampling (b, ¢) b Completing the sampling of edge (b, ¢) by resampling the edges in
by matching SMPL(c) with edges* (b). The result of the sampling is shown. Depicted is the plan, the
TBL(b). ROX-sampled can now  result size of which can now be estimated by ROX-sampled, using the
estimate the cardinality of the estimated hit ratio.

depicted plan.

Figure 6.10 The sampling of edge (b, ¢). By re-sampling the edges in edges*(b), ROX-
sampled estimates the size of the edge (b, C) while taking into account the previously
executed edges branching from b.

into account the chains of previously executed edges branching from the
vertex b.

In this section, we have introduced the ROX-sampled variant. ROX-
sampled uses samples during both its optimization and execution phases.
Decisions made during the optimization steps are recorded, shaping iterat-
ively the final execution plan. Once the order of all edges in the join graph
is optimized, the defined plan is executed on full tables. We have also de-
scribed the types of tables associated with vertices, and the approach used
by ROX-sampled to execute and sample edges in a join graph, including
the special case of edges with two executed vertices. In the next section,
we present the ROX-sampled algorithm giving a complete and detailed
description of this new variant.
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The ROX-sampled Algorithm

ROX-sampled, presented in Algorithm [11} follows the same main steps
as ROX-full. The first phase initializes the join graph, while the second
phase alternates between optimization and execution steps. Optimization
initiates, through the chain sampling technique, a search for the superior
path to execute, while execution executes the chosen sequence of operators.
Next, we describe each of these phases in detail.

Phase 1 (Algorithm [T} lines[1}TT)

The first part of Phase 1 acquires knowledge about the vertices in the
join graph: it defines the tables associated to a vertex, and estimates
the number of XML nodes corresponding to the vertex. For a vertex v,
the corresponding index is sampled to build its execution-sample table
ESMPL(v) of size T’ (line 3} line|7). The index is also used to estimate the
cardinality card(v) of XML nodes corresponding to v (line[g} line [8). Next,
the sample table SMPL(v) is initialized to a sample of size T randomly
chosen from the execution-sample table ESMPL(v) (line @ line @ In
principle, the above operations are performed for all kinds of vertices as
long as a sampling technique that satisfies the zero-investment property is
available. In the ROX-sampled prototype and due to the supported types
of indexes, only vertices that represent either an XML element with a given
qualified name g (line [2) or a text node with an equality condition (line [6)
are considered in this process.

The second part of Phase 1 computes the weight of the edges in the
graph using the WEIGHT function presented in Section [6.2.1] (lines [1offr1).
Again, analogously to ROX-full, a weight cannot be computed for all the
edges in the graph. Since the weight of an edge is estimated through
sampling, only those edges with at least one vertex that has a sample table
that has been initialized in the previous step will be assigned a weight.

Phase 2 (Algorithm lines[T13}23)

The second phase of ROX-sampled is the core of the algorithm, and consists
of interleaving optimization and execution steps, until all edges in the
join graph are executed (in other words, until every edge is assigned an
execution order). Recall that the execution of an edge ¢ in ROX-sampled
corresponds to sampling the edge e. In every optimization phase, the
following steps are made:

* Pick the unexecuted edge e = (v1,v;) in the join graph that has the

smallest weight (line [15).

e If at least one of the vertices of the edge ¢ has more than one un-
executed edge (line [16), then the chain sampling process is initi-
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Algorithm 11: ROX-saMPLED: ROX FOR PIPELINED SYSTEMS

12

13
14

15
16
17
18
19

20

21

22

23

N
BN

INPUT : Join Graph G = (V,E), Int 7, Int T/

// T = size of sample tables and limit of cutoff-sampling
operations used in optimization phases, T' = size of
execution-sample tables and limit of cutoff-sampling
operations used in execution phases

// Initialization phase
FOREACH ¥ € V DO
IF v is an element type with qualified name g THEN

Delt
ESMPL(v) — >+ (v (4));
Delt
Clli’d(U) “— EstCard( \V4 (Q)) ;
SMPL(v) « >(ESMPL(v));
ELSE IF v is a text node with predicate “= x” THEN

Dtext

ESMPL(v) « o (v (x));

Drext
card(v) «— EstCard( \V4 (x)) ;
SMPL(v) « >(ESMPL(v));

FOREACH ¢ = (v1,v2) € E | SMPL(vy) # NULL V SMPL(v;) # NULL DO
| w(e) — WeiGHT(e);

Int order — 1 ;

// Core phase: alternation of optimization and execution
WHILE 3 more edges to execute DO

Pathp; // p = sequence of operators to be executed

Edgee = (v1,v2) |e € EAw(e) = migw(ei);
e
IF |edges™ (vq)| > 1V |edges™ (vp)| > 1 THEN
p < CHAINSAMPLE(e);

ELSE

| p e {e};

FOREACH Edge e € p DO
SETEXECORDER (¢, order);
order < order +1;

ExecPATH&UPDATE]G(p);
ExecuTePLAN();
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Algorithm 12: WEIGHT

INPUT : Edge e = (v,7)
OUTPUT: Int weight

// Determine the sampling direction of e
1 Vertex List (lopd, ropd) < SAMPLINGDIRECTION(e);

// Cutoff-sampling of e
2 (S, hr) « >+ (op(e, SMPL(lopd), TBL(ropd)));

// Sample chains of executed edges branching from ropd
3 Double branch_hr «— 1 ;
4 TF |edges™ (ropd)| > 0 THEN
5 \ branch_hr <« SAMPLEEXECUTEDEDGES(ropd, { }, branch_hr, T x 2);

// Compute the hit ratio of all sampled edges including
the edge e, then estimate the weight of e
6 branch_hr < branch_hr x hr ;
7 Int weight — card(lopd) x branch_hr;

8 RETURN weight;

ated (line[17). The ChainSample function, explained in Section [6.2.4]
searches for the superior path p and returns it for execution.

¢ If the two vertices of the edge ¢ have at most one unexecuted outgoing
edge each, then chain sampling will not take place, and the path p to
be executed consists of only edge e (line [19).

¢ Every edge in the chosen path p is assigned an execution order
(lines [20f22). The execution order of the edges defines the final
execution plan chosen by ROX. Then all edges in p are executed
and the knowledge in the join graph is updated using the function
ExeEcPAaTH&UPDATE]G described in Section (line

When all edges in the join graph are ordered, then the defined final
execution plan is executed using full tables as input (line 24).

We have given a global description of the ROX-sampled algorithm. The
only difference we have seen so far between ROX-full and ROX-sampled
is in the definition of the tables associated with vertices. In the following,
we give a detailed explanation of the building blocks of the ROX-sampled
algorithm.
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a ROX-sampled needs to compute the weight of the edge ¢ = ('01, vz)
in the join graph. We suppose that the SAMPLINGDIRECTION function
chose U1 to be the left operand of the sampling operation of the edge e.
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X3 X2 X1 3
—— ——
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U1 —> U2 U5
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card(vy) = 20000
|SMPL(v7)| = 100

b The join graph illustrating the sampling of the edge ¢ = (vl,vz). The
arrow on the edge denotes the sampling direction. Since v5, the right
operand of the sampling operation, is an executed vertex, the chains of
executed edges branching from v, should be sampled.

Figure 6.11 An example join graph illustrating the WEIGHT algorithm.

6.2.1 The WEIGHT Function

Given as input an edge e = (v,v'), the WEIGHT function, presented in
Algorithm [12} computes the weight of the edge, by sampling the operator
associated with e. First the sampling direction of the edge ¢ is defined,
i.e. the left and right operands (lopd and ropd) of the sampling operation
are determined (line [1). This is performed by the SAMPLINGDIRECTION
function, presented in Section Then the operator associated with the
edge e is cutoff-sampled using the limit T and as left input the sample table
SMPL(lopd) and as right operand the full table TBL(ropd) (line [2).

If the right operand ropd of the sampling operation is an executed
verteX, then the chains of executed edges branching from ropd needs to
be sampled to take these previously executed edges into account in the
weight estimation process (lines [g}f5). The sampling of the executed edges
is performed by the function SAMPLEEXECUTEDEDGES and is explained in
Section The SAMPLEEXECUTEDEDGES function returns the hit ratio of
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card = ???

/ \ TBL(v2) TBL(0s)

TBL(v;) TBL(v,)

a The sequence of operators that needs to be sampled b The sequence of operators sampled by the
and their hit ratio estimated to compute the weight of SAMPLEEXECUTEDEDGES function. The function
the edge ¢ = (Ul, ’(Jz) of the join graph in estimates and returns the join hit ratio of the
Figure[6.1T3] shown plan.

Figure 6.12 The sequence of operators that needs to be sampled and their hit ratio es-
timated to compute the weight of the edge e = (01,?)2) of the join graph in Figure
The join TBL(v1) <1 TBL(v7) is sampled and its hit ratio estimated by the WEIGHT
function, while the other joins are sampled and their hit ratio estimated by the SAMPLEEX-
ECUTEDEDGES function.

the set S of edges it has sampled, which is then used to compute, with the
technique described in Section the hit ratio of the set of edges SU {e}
(line[6). Using the newly computed hit ratio branch_hr, the weight of the
edge ¢ is then estimated (line 7).

Example 6.2.1. Figure shows an example join graph in which the
weight of the edge e = (v1,v2) is to be computed. We suppose that the
sampling direction of the edge ¢ is determined to be (Ul,vz), therefore
the edge e is sampled using as left input the sample table SMPL(v;). The
sampling process is depicted in Figure where the arrow indicates
the sampling direction. We suppose that the hit ratio hr of the edge e is
estimated to be 2. To compute the weight of e, since v; is an executed
vertex, ROX-sampled needs to estimate the result size of the plan depicted
in Figure The join TBL(v;) <t TBL(v,) is sampled and its hit ratio
estimated by the WEIGHT algorithm as we have already seen, while all other
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joins illustrated in the plan in Figure are sampled and their hit ratio
estimated by the SAMPLEEXECUTEDEDGES function. Let the estimated hit
ratio of the plan in Figure be 3. The WEIGHT function then computes
the hit ratio of the sequence of operators in the plan of Figure as
3 x 2 = 6 (Algorithm line [§). Knowing that card(v;) = 20000, the
weight of the edge e is finally estimated to be: 20000 x 6 = 120000.

6.2.2 The SAMPLINGDIRECTION Function

Given an edge ¢ = (v,7") which is to be sampled, the SAMPLINGDIRECTION
function, presented in Algorithm [13|determines, by checking the character-
istics of the two vertices of e, the left and right operands of the sampling
operation of e. The decision is based on two criteria. The first is the number
of executed edges branching from each of the vertices. If no choice can
be made using the first criterion, then the decision is derived based on
the size of the execution-sample table associated with each vertex. The
algorithm examines several situations listed below:

* Case 1: |edges* (v)| # |edges* (¢')| - (lines [aljs).

e Case 2: |edges*(v)| = |edges* (v")| A SMPL(v) # NULL A SMPL(v'") #
NULL - (lines [6Hz0).

* Case 3: |edges™(v)| = |edges*(v')| A (SMPL(v) # NULL & SMPL(v') #
NULL) - (lines [11ff14). The & symbol represents the exclusive or.

Example 6.2.2. To describe the above cases, we use the example join graphs
shown in Figure In each join graph in the figure, we suppose that
the samplig direction of the edge e = (v,v') is to be determined by the
function SAMPLINGDIRECTION.

¢ Case 1 (Figure and Figure [6.13b): In this case, at least one of
the two vertices of ¢ is an executed vertex. The decision about the

sampling direction in this situation is based on reducing the num-
ber of executed edges to be sampled. We already know that when
sampling an edge, if the right operand of the sampling operation is
an executed vertex, the chains of executed edges branching from the
vertex should be sampled. Therefore, the function SAMPLINGDIREC-
TION picks the vertex with the smallest number of branching executed
edges to be the right operand. In Figure and Figure we
have |edges* (v)| > |edges*(v')|, therefore v’ is chosen to be the right
operand (lines [1}5).

* Case 2 (Figure and Figure[6.13d): In this case, the two vertices
v and v’ have the same number of executed edges in their branches
(ledges*(v)| = |edges*(v')]), therefore the criterion here is not about
reducing the number of executed edges which ROX-sampled has
to sample. Since both vertices are initialized (SMPL(v) # NULL and
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Ps ——P3 q2

a Case 1. |edges* (v)| = 4 and

ledges* (v")| = 2. The vertex v’ is chosen to
be the right operand of the sampling operation to
reduce the number of executed edges which
ROX-sampled should sample.
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0 — 'z)/
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|ESMPL(v)| = 200
|[ESMPL(v')| = 450

c Case 2. |edges* (v)| = |edges* (v')| = 2,
SMPL(v) # NULL, and

SMPL(v") # NULL. To get accurate
estimation from the sampling operation, v is
chosen to be the left operand. In fact, v has a
smaller execution-sample table, therefore its
sample table SMPL(v) randomly chosen from
ESMPL(v), will be more representative.

P1
N

4

e
p2

P2 = —P1 n
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b Case 1. |edges* (v)| = 4 and

ledges* (v')| = 0. The vertex v’ is chosen to
be the right operand of the sampling operation to
reduce the number of executed edges which
ROX-sampled should sample.

P1 n
\ /
0 — z)/

e N
p2 1

|ESMPL(v)| = 150
|[ESMPL(¢v')| = 400

d Case 2. |edges* (v)| = |edges* (v')| = 0,
SMPL(v) # NULL, and

SMPL(v") # NULL. To get accurate
estimation from the sampling operation, v is
chosen to be the left operand. In fact, v has a
smaller execution-sample table, therefore its
sample table SMPL(v) randomly chosen from
ESMPL(v), will be more representative.

n

//
\

(4
12

|SMPL(v)| # NULL
|SMPL(v')| = NULL

e Case 3. |edges* (v)| = |edges*(v')| = 0,
SMPL(v) # NULL, and SMPL(v') = NULL. Since the
sample table of vertex v’ is not initialized yet, the only
possibility is to choose v to be the left operand of the

sampling operation.

Figure 6.13 Join graph examples illustrating different cases examined by the function
SAMPLINGDIRECTION. In each join graph, the sampling direction of the edge ¢ = (v,?’) is

to be determined.
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Algorithm 13: SAMPLINGDIRECTION

INPUT : Edge e = (v,7)
ouTpPUT: Vertex List (lopd, ropd)

1 IF |edges* (v)| # |edges* (V)| THEN
IF |edges*(v)| > |edges™ (v')| THEN
| RETURN {0,70'};

N

3

4 ELSE

5 | RETURN {V/,0};

6 TF SMPL(v) # NULL A SMPL(?v') # NULL THEN
/

7 | 18 |ESMPL(v)| < |ESMPL(?v'")| THEN

8 | RETURN {0,7'};
9 | ELSE
10 | RETURN {V/,0};

11 ELSE IF SMPL(v) # NULL THEN

12 | RETURN {0,7'};
13 ELSE
14 | RETURN {¢/,0};

SMPL(v') # NULL), the algorithm compares the size of the execution-
sample table of the two vertices and chooses the vertex with the
smallest cardinality to be the left operand (lines [6}{10). The reasoning
behind this choice is that the smaller the set from which a sample is
picked, the more representative the chosen sample, and hence the
more accurate the result of the sampling operation.

* Case 3 (Figure [6.13€): Similarly to Case 2, the two vertices v and v/
have the same number of executed edges in their branches (|edges*(v)| =
ledges*(v')[). But in this case, only the tables of the vertex v have
been initialized. Hence, the vertex v’ cannot be used as left operand
since its execution-sample and sample tables have not been defined
yet. Therefore, the vertex v is chosen to be the left operand of the

sampling operation (lines [6{{10).

We now summarize our description of the SamplingDirection function.
When deciding about the sampling direction of an edge, the following two
points are taken into account:
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Algorithm 14: SAMPLEEXECUTEDEDGES

INPUT : Vertex v, List sampled_edges, Double branch_hr, Int LIMIT

// v = the vertex of which the chains of executed edges
needs to be sampled, sampled_edges = list of executed
edges sampled so far, branch_hr = the hit ratio of all
the executed edges sampled so far, LIMIT = limit for
cutoff-sampling

outrut: Double branch_hr

1 FOREACH edge ¢ = (v,v') € (edges™ (v) \ sampled_edges) po
2 (SMPL(?'), hr) < >rumrr(op(e, SMPL(v), TBL(?')));

3 | sampled_edges.INSERT(e);

4 branch_hr = branch_hr X hr;

5 LIMIT «— LIMIT+ T ;

6 | IF |edges™ (V') \ sampled_edges| > 0 THEN
7 branch_hr «—
SamPLEEXECUTEDEDGES (v, sampled_edges, branch_hr, LIMIT);

8 RETURN branch_hr;

1. First priority: Reduce the number of executed edges to be sampled
to keep the sampling cost small.

2. Second priority: Use a more representative sample table as left input.

SAMPLEEXECUTEDEDGES Function

Given a vertex v, the function SAMPLEEXECUTEDEDGES, presented in Al-
gorithm [14} samples the chains of executed edges branching from v, and
estimates their hit ratio. The sampling is performed in a depth-first manner:
first an executed edge ¢ = (v,v’) outgoing of v is sampled using as left
input the sample table SMPL(v) (lines[xffz), then if the vertex ¢/, the right
operand of the sampled edge ¢, is an executed vertex, the executed edges of
v’ are also sampled. This is done by calling the algorithm recursively with
the vertex v as argument (lines . Note that in the recursive function
call, the value of the passed cutoff limit is increased by 7 (line [5). This
allows for the generation of results with larger sizes, which reduces the
chance of estimation errors being propagated through the sampling pro-
cess, hence making the estimated cardinalities more accurate. We note that
the cutoff limit can also be increased with a value other than t; however,
we have not tested which value would be best to use.

The hit ratio hr estimated by the cutoff-sampling of the edge ¢ is used
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a A join graph in which the edge ¢ = (01,02) is b The join graph illustrating the sampling of the
sampled to compute its weight. The other edges of chains of executed edges branching from v2. The
©1 have been ommitted from the figure for number on the edges denotes the order in which
illustration reasons. The edge e is sampled with v the edges are sampled, and the arrows indicate the
as left operand. Since U5, the right operand of the sampling direction. The edges are sampled in a
sampling operation, is an executed vertex, the depth-first manner, with each sampling step using
chains of executed edges branching from v are as input the output result of the previous sampling
sampled. operation.

Figure 6.14 An example join graph illustrating the sampling process of the function
SAMPLEEXECUTEDEDGES.

to derive the hit ratio branch_hr of all the edges sampled so far (line
The computation of branch_hr is performed using the method described in
Section Note that the hit ratio branch_hr is passed to every call of the
SAMPLEEXECUTEDEDGES function.

In join graphs with cycles, it is possible to encounter the same edge
several times through different routes. In order not to sample the same edge
multiple times, the algorithm keeps track of the edges that are sampled
through the list sampled_edges. Every edge sampled by the function is
inserted in the list sampled_edges (line [3) which is also passed to every call
of the SAMPLEEXECUTEDEDGES function.

Continuation of Example We reconsider the example join graph
presented in Figure Recall that the edge e = (v1,v;) has already
been sampled by the WEIGHT function as part of estimating the weight of
e. The current situation is depicted in Figure We omit some of the
edges of the vertex v; from the figure for illustration purposes. Since vy,
the right operand of the sampling operation, is an executed vertex, the
chains of executed edges branching from v, are also sampled using the
SAMPLEEXECUTEDEDGES function. The sampling process is illustrated in
Figure The number on the edges denotes the order of sampling,
and the arrows represent the sampling direction. The edges are sampled
recursively, in a depth-first manner. Figure lists the sampled edges,
their hit ratio hr estimated through cutoff-sampling, and the derived hit
ratio branch_hr of the collection of edges sampled so far.
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Sampled Edge hr branch_hr

Before sampling starts 1
(v2,v3) 2 2
(v3,04) 0.5 1
(vs,v5) 3 3
(v2,v6) 2 6
(ve,v7) 0.5 3

Figure 6.15 The estimation of the hit ratio of the sampled chains of edges branching from
the vertex v in the join graph of Figure [6.14b] The table presents each sampled edge, its
estimated hit ratio /17, and the derived hit ratio of the set of edges sampled so far branch_hr.
The data in the first row corresponds to the value of the branch_hr argument passed to the
SAMPLEEXECUTEDEDGES function.

The CHAINSAMPLE Function

The CHAINSAMPLE function of ROX-sampled follows the same steps as
its counterpart in the ROX-full algorithm. The few differences existing
between the two are explained in this section.

The first difference is in the method employed to pick the vertex to use as
the starting point of the chain sampling exploration. As we have seen in
Section [6.2.2] the highest priority when picking the sampling direction of a
to-be-sampled edge is to reduce the number of executed edges that needs
to be sampled to keep the sampling overhead limited. Therefore, line [1]in
Algorithm |s5|is replaced with the following statement:

Vertex start_vertex « SAMPLINGDIRECTION(¢);

The second difference occurs when chain sampling cutoff-samples an
edge ¢ = (v,v'). In ROX-sampled, whenever an edge is sampled, the
algorithm needs to check if the right operand of the sampling operation
is an executed vertex and if so the chains of executed edges of the vertex
should be sampled. Therefore, the following statements are added after

line [16]in Algorithm
Double branch_hr < 1;
// If v’ is an executed vertex, sample the chains of executed edges
branching from o’
1F (|edges™ (v')| > 0)

branch_hr «— SAMPLEEXECUTEDEDGES(V', { }, branch_hr, LIMIT + 7);
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// Compute the hit ratio of all sampled edges including the edge ¢’
hr < branch_hr x hr;

The above piece of code is similar to the one in Algorithm [12| between
lines [3] and [} therefore for a detailed explanation, we refer the reader back
to Section

6.2.5 The EXECPATH&UPDATEJG Function

After picking the edge with the smallest weight, the ROX-sampled al-
gorithm either initiates a chain sampling process to search for a superior
path and return it for execution, or executes the path consisting of the
singleton edge e. The function responsible for executing a given path p and
then updating the knowledge in the join graph using the new up-to-date
generated results is ExecCPATH&UPDATE]G presented in Algorithm |15 We
again remind the user that execution here refers to a sampling operation
using an execution-sample table as left input.

The ExEcPATH&UPDATE]G algorithm in ROX-sampled is similar to its
counterpart in ROX-full. First, for each edge e in p, the execution direction
of e is determined. Since execution here is nothing more than a sampling
operation, the SAMPLINGDIRECTION function is used (line . The edge
e is then executed by cutoff-sampling with limit 7’ the join between the
execution-sample ESMPL(lopd) and the full table TBL(ropd) (line3).

As previously explained in Section [6.1.4} if the right operand ropd of
the execution operation of an edge is an executed vertex, then the chains
of previously executed edges branching from ropd should be re-executed.
This is performed with the REEXECUTEEDGES function (lines [4{{6), which
is described in Section Additionally, the REExecUTEEDGES function
estimates and returns the hit ratio of all re-executed edges (line[6), which
is then used to compute the hit ratio of the set of re-executed edges along
with the edge e (line 7).

After executing the edge ¢, the knowledge in the join graph is updated
using the new data in the execution-sample tables (lines [8{fz2). First, for
each vertex v of ¢, the execution-sample table of v is sampled to create a
new sample table corresponding to v (line [g). Then the estimated hit ratio
of the executed edge e and potentially of those re-executed edges is used
to compute an estimation of the cardinality of v (line[10). Finally, for every
unexecuted edge of v, the weight of the edge is (re-)computed to derive a
new weight using the more accurate samples (lines [11{{12).
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Algorithm 15: EXECPATH&EUPDATE]G

INPUT : Pathp

1 FOREACH edge ¢ € p DO
// Determine execution direction of ¢
2 Vertex List (lopd, ropd) = SAMPLINGDIRECTION (e);

// Execute e
3 (S, hr) « > (op(e, ESMPL(lopd), TBL(ropd)));

// If ropd is an executed vertex, re-execute the chains
of executed edges branching from ropd

4 Double branch_hr +— 1 ;

5 | IF |edges™ (ropd)| > 0 THEN

6 branch_hr «— ReExecuTeEDGES(ropd, {e}, branch_hr, v’ x 2) ;

// Compute the hit ratio of all the re-executed
edges and the edge ¢

7 branch_hr < branch_hr X hr;

// Update knowledge in join graph
8 | FOREACH v € {v1,03} DO

9 SMPL(v) < >(ESMPL(v));

10 card(v) « card(lopd) x branch_hr;
1 FOREACH ¢ € edges™ (v) DO

12 | w(e) — WeiGHT(e);

6.2.6 The REEXECUTEEDGES Function

The REEXECUTEEDGES function is similar to the SAMPLEEXECUTEDEDGES
function. Given a vertex v, the two algorithms re-execute/sample the
chains of previously executed edges branching from v and estimate the
hit ratio of the set of re-executed/sampled edges. The main difference
between the two is that the execution operation uses a different cutoff
limit 7’ instead of 7, and an execution-sample table instead of a sample
table as its left input. Therefore, the REEXECUTEEDGES algorithm is the
same as the SAMPLEEXECUTEDEDGES algorithm, presented in Section [6.2.3]
(Algorithm [14), modulo the following three modifications:

e Line 2|in Algorithm [14]is replaced with:
(ESMPL(U/), h?‘) — ELIMIT (OP(E, ESMPL(U), TBL(U/) ) );
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e Line[s|in Algorithm [14]is replaced with:
LIMIT « LIMIT + 7’;
e Line[7]in Algorithm [14]is replaced with:

branch_hr <+ REEXECUTEEDGES (v’ , sampled_edges, branch_hr, LIMIT);

In the previous sections, we have described in detail the algorithm for
ROX-sampled, our run-time optimizer targeting systems with a pipelined
execution strategy. In the next section, we present the experiments we
have conducted to assess the robustness of ROX-sampled in general and in
comparison to ROX-full.

6.3 Experiments

The main difference between ROX-sampled and ROX-full is that the first
uses samples throughout the whole algorithm while the latter alternates
between the use of sample tables during the optimization phases and full
tables during the execution steps. One of the reasons behind the robustness
of ROX-full is that the optimization decisions are made using up-to-date,
newly materialized data that is generated during previous execution steps.
By basing, in ROX-sampled, the decisions about the execution order of
the operators in the join graph on only sampled data, we run the risk of
jeopardizing the quality of decisions made by the new ROX variant and
consequently its robustness. Therefore, the target of the experiments we
present in this section is to assess the robustness and quality of decisions
made by ROX-sampled by comparing them with the ROX-full decisions.
We also expand our assessment to include a comparison with a classical
compile-time optimizer. We finally investigate the impact of the cutoff
limit value on the performance of ROX-sampled.

6.3.1 Experiments Setup

Similar to ROX-full, a prototype of the ROX-sampled algorithm has been
implemented on top of MonetDB. We stress that the objective of this chapter
is to propose a variant of ROX-full that is suitable for pipelined database
systems, and to test and compare the quality of plans generated by both the
new variant and ROX-full. Therefore, we refrain from implementing the
ROX-sampled algorithm in a database system with a pipelined execution
strategy, and direct and focus our experiments on assessing the robustness
and quality of our approach within the same database system.
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root root root root

DOC1.xml DOC2.xml DOC3.xml DOC4.xml
T // T // T // T //
author author author author

Figure 6.16 Join graph corresponding to the DBLP query template. The solid lines corres-
pond to the edges in the join graph generated by the Pathfinder XQuery compiler. The dotted
lines are added by ROX and represent join equivalences implied from the three equality joins
defined in the query template.

The experiments use the same DBLP XML dataset’ and XQuery tem-
plate used for the ROX-full experiments presented in Section We give
here a brief review of the experiment setup, and refer the reader back to
Section [5.5| for a detailed description.

The DBLP document is divided into ~4500 single XML documents, one
for each journal or conference. The different documents are then clustered
based on their research area. The used XQuery template, presented below,
asks for authors that have published in four different journals and/or
conference series:

for $al in doc(‘‘DOC1.xml’’)//author,
$a2 in doc(*‘DOC2.xml’’)//author,
$a3 in doc(‘‘DOC3.xml’’)//author,

$a4 in doc(‘“DOC4.xml’’) //author
where $al/text() = $a2/text() and

$al/text () $a3/text () and

$al/text () $ad/text ()
return $ail

The join graph corresponding to the above query is illustrated in Fig-
ure By replacing the 4 documents in the XQuery template by 4 journal
and/or conferences chosen from the same or different research areas, ROX-
sampled will be tested against queries with different degrees of correlation.

'http://dblp.uni-trier.de/xml/
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It is in general more likely that authors publish in various journals and/or
conferences of one research area, than that an author publishes in multiple
research areas. We cluster the document combinations, according to their
anticipated correlation, into 3 groups: group 2:2, group 3:1, group 4:0. A
group x:y contains all combinations of 4 documents such that x number
of documents are chosen from the same research area and y number of
documents are picked from a different area. Since testing the 4500 doc-
uments and all 409515972723000 combinations of 4 documents will take
unnecessarily a large amount of time without much impact on the experi-
mental results, we select 23 “representative” documents from 5 research
areas (Database, Data mining, Information retrieval, Bioinformatics, Arti-
ficial Intelligence), which results in 831 document combinations yielding
non-empty results. The size of the documents extracted from the original
DBLP document ranges from 300 B to 4.8 MB. ROX + MonetDB/XQuery
evaluates all 831 queries in less than 5omilliseconds. To achieve more
reliable performance measurements, we scale the complete DBLP dataset
to 45 GB by replicating each article 100 times. To avoid duplicates and to
maintain the original data distribution and correlation, we suffix the titles
and author names of each replicated article with a serial number from
[0,...,100].

6.3.2 Execution Order of Operators

In our first experiment, we investigate whether, given a join graph, ROX-
full and ROX-sampled choose the same execution order for the operators
in the graph.

We run the two ROX variants using the 831 document combinations,
and compare the chosen execution order of operators. The size of sample
tables, execution-sample tables, and the cutoff limit T used in sampling
operations during the optimization phases of both ROX-full and ROX-
sampled is varied along the values 100,500, and 1000. We refer to the
aforementioned values as “sample size”. In this experiment, the sampling
operations of the execution phases of ROX-sampled are performed without
a cutoff limit, i.e. all tuples in the sample input are consumed by the
sampling operation. The reason behind this choice is to experiment with
ROX-sampled without limiting the generation of results during its execu-
tion phases. We note that a subsequent experiment (Section [6.3.4) tests
whether introducing the cutoff limit jeopardizes the quality of the pro-
duced plans, and it proved that when using a large enough cutoff limit
value the quality of plans remains the same.

Figure shows the percentage of the 831 queries optimized to the
same plan by the two ROX variants. With a sample size equal to 100, only
20% of the generated plans are the same. This number increases to 48%
when a sample size of 1000 is used. The figure also presents the percentage of
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Figure 6.17 Percentage of the 831 queries optimized to the same plan by both ROX-full
and ROX-sampled, and percentage of those queries for which the plans generated by the
two variants share the same equi-join ordering but a different step placement among the
equi-joins.

plans generated by the two variants that share the same equi-joins ordering
but that differ in the placements of the XPath steps (author/text ()) among
the equi-joins. This is of interest since the correlations between the 4
queried documents is detected by correctly estimating the result size of the
equi-joins. Therefore, when the two variants order the equi-joins similarly,
it means that they detect and handle the correlations in the same manner.
Noticeably, the two ROX variants, in their search for the best execution
plan, manage to similarly order the equi-joins more often than generating
the same plan. The percentage of plans with the same equi-joins ordering
grows from 55% to 73% when the sample size increases from 100 to 1000.

We conclude that an increase in the sample size reduces the differences
between the two ROX variants. With a sample size equal to 1000, ROX-
sampled is comparable to ROX-full in detecting correlations, and differs
mainly in ordering the step operators.

Execution Time of Plans

In the previous experiment, we compared the ordering of operators in
the plans generated by the ROX variants. We noticed that with a larger
sample size, the gap between ROX-sampled and ROX-full becomes smaller.
Since the two variants do not always generate the same plan, the next
point we investigate is whether the quality of a ROX-sampled plan is
considerably worse than its counterpart ROX-full plan. Therefore, this
second experiment compares the execution time of the plans generated by
the two ROX variants.
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Figure 6.18 Average normalized execution time of the pure plan and full run plan generated
by the two ROX variants for the 831 document combinations using different values of sample
size. The normalization is relative to the fastest of the four considered execution plans.

We run ROX-full and ROX-sampled on the 831 document combinations,
varying the sample size as explained in Section For each of the
two ROX variants, we consider and record the execution time of 2 plans:
the pure plan and the full run. Pure plan represents the generated plan
excluding the sampling cost, while the full run stands for the chosen
plan including the sampling overhead. The sampling overhead in the full
run plan of ROX-sampled includes the cost of the sampling operations
performed during both the optimization and execution phases. Figure
shows the average execution time of the 4 considered plans, normalized
to the plan with the smallest recorded time. The execution time of the
pure plan of ROX-sampled decreases when a bigger sample size is used,
while ROX-full is almost insensitive to the sample size. With a sample size
of 100, the execution time of ROX-sampled is on average 9% slower than
ROX-full, and it decreases to 6% when a sample size of 1000 is used. This
indicates that even though more than 50% of the 831 queries are optimized
to different plans by the two ROX variants (Figure [6.17), the quality of
the chosen plans is comparable. The execution time of the full run plans
of both variants increases when a larger sample is used, which is to be
expected since more data is joined during the optimization phases.

We note that the sampling overhead in ROX-sampled is higher than in
ROX-full. This is caused by the fact that in ROX-sampled all operations
performed not only during the optimization phases but also during the
execution phases and while re-executing and sampling previously executed
edges contribute to the optimization cost. The sampling overhead in ROX-
sampled is on average only 6% higher, which leads us to conclude that the
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overhead created by the sampling performed during the execution phases,
and by the redundant work when re-executing and sampling previously
executed edges is limited.

Figure shows the normalized execution times of the four plans gen-
erated for each of the 831 document combinations, while using a sample
size of 1000. We also assume in this experiment a classical compile time
optimizer, similar to the one described in Section [5.5.2] The classical optim-
izer is able to accurately estimate the cardinality of operations carried on a
single document, but lacks the ability to estimate the correlations existing
between two or more documents. This results in an order of the equi-joins
that reflects a smallest-input-first heuristic where the two smallest author
sets are joined first, the result is then joined with the third smallest author
input, and the remaining author set is finally joined with the generated
output. For the plan exhibiting this smallest-input-first equi-join ordering,
we consider three canonical step placements among the equi-joins: SJ, JS,
and S_J. The first consists of executing the steps of all 4 documents before
the joins in the same order of the joins execution. The second corresponds
to first executing one step to provide the initial input for the join sequence,
then all joins are evaluated, and the remaining 3 steps are executed last.
The last canonical step placement consists of first executing the initial step
and join, then a step corresponding to a certain document is executed right
after the document has been joined to the already generated intermediate
result. The normalized execution time of the fastest of the SJ, JS, and S_]J
plans is plotted.

The plot in Figure shows that the pure plan of ROX-full is the
fastest almost all the time. The performance of ROX-sampled is closely
similar to ROX-full, less than two times slower for most queries. However,
for few queries, it can be 3 to 4 times slower. The sampling overhead is on
average around 30% of the execution time of the full run plan, with a barely
noticeable small difference between the overhead generated in ROX-full
and ROX-sampled. The two ROX variants are robust and insensitive to
the different correlations, their performance is stable across and within the
three clusters 2:2, 3:1, and 4:0, while the classical optimizer shows strong
variations, sometimes picking plans that are 2 orders of magnitude slower
than the ROX plans.

For few queries, ROX-full picks a plan that is 2 times slower than
the fastest plotted plan. Similarly, ROX-sampled is in some cases 3 to 4
times slower than ROX-full. The reasons behind this degradation in the
performance have been explained in detail in Section and consist
mainly of the front-bias nature of the cutoff-sampling implementation and
of the use of non-representative starting sample sets while chain sampling.
Potential solutions to these problems have been described in Section
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Impact of the Cutoff Limit

In our last experiment, we vary the cutoff limit used during the execution
steps of ROX-sampled, to study its impact on the performance of ROX-
sampled.

In the previous experiments, sampling during the execution steps of
ROX-sampled was performed with an unlimited cutoff limit: all tuples in
the sampled input were consumed by the sampling operation. Therefore,
we wish to investigate whether using a specific cutoff value to limit the
generation of intermediates tuples will jeopardize the quality of plans
chosen by ROX-sampled. In this experiment, we reduce the value of the
cutoff limit 7/ used during the execution phases of ROX-sampled from
unlimited to the double of the sample size. Analogously to the previous
experiments, we vary the sample size along the values 100,500, and 1000.

We measure the elapsed time of the pure and full run plans of ROX-full,
ROX-sampled, and ROX-sampled with cutoff, using the 831 document
combinations. Figure shows the noted execution times of the 6 plans,
normalized to the fastest plan among the 6 considered ones. The symbols
(-) and (+) denote, respectively, pure plans and full run plans. We notice
that the use of a small cutoff limit 7’ results in a small increase in the
execution time of ROX-sampled, while the use of a cutoff limit of 2000
does not. This means that the quality of the chosen plan in case of a small
7’ value is slightly worse. This is to be expected since with fewer data
being generated during the execution phases of ROX-sampled, the chance
of less representative samples used during the optimization steps is higher.
However, a cutoff limit 7/ of 2000 proves to be enough, which means
that it is possible to replace an unlimited cutoff limit with an appropriate
value without affecting the performance of ROX-sampled. Note that the
overhead in the case of ROX-sampled with cutoff is higher than that of
ROX-sampled when 7’ takes the value 200 and 1000. This is because the
pure plans themselves chosen by ROX-sampled are already slower.

In the previous experiments, we have focused on studying the performance
of ROX-sampled, while using the DBLP data set. We also note that ROX-
sampled has also been evaluated against XMark documents,” and has
proven to be successful in picking a good execution order for the operators
in the join graph. In particular, given as input the XQuery Q and its
variant Q' presented in Section ROX-sampled is capable of detecting
the correlation and its changing effects between the different nodes in the
query, and of exploiting it to determine a good execution order of the
operators in the join graph. In fact, the plans chosen by ROX-sampled and
ROX-full for Q and Q' are the same.

*http://www.xml-benchmark.org/
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Figure 6.20 Average normalized execution time of the pure plan and full run plan gener-
ated by the ROX-full, ROX-sampled and ROX-sampled with cutoff for the 831 document
combinations using different values of sample size. ROX-sampled with cutoff uses a cutoff
limit T/ for the sampling operations performed during its execution phases, which is equal
to twice the sample size. The normalization is relative to the fastest of the six considered
execution plans.

6.4 Implementing ROX-sampled in Pipelined Database
Systems

Now that we have explained the ROX-sampled approach, we briefly discuss
the requirements to implement the ROX-sampled algorithm in database
systems with a pipelined execution strategy. We focus on two aspects: con-
structing the sample and execution-sample tables associated with vertices
in the join graph, and the techniques used to sample joins.

In the ROX-sampled algorithm, we have used index lookups to pick
the initial samples of XML nodes corresponding to a given vertex. Another
method that does not require the existence of indexes on every attribute
is to have the sample tables pre-built and stored in the database. This is
comparable to collecting statistics, but instead of storing the data char-
acteristics about each attribute, a representative sample of the attribute’s
values is stored. One difference between collecting statistics and storing
samples for single attributes, is that correlations existing between two or
more attributes can easily be derived by using the sampled data, a task
that is not possible in the case of statistics, resulting in an attribute value
independence being usually assumed. A good survey about techniques to
select representative data samples from a table is given in [100].

Two types of edges exist in a join graph: XPath step edges and relational
join edges. In the ROX-sampled prototype, XPath steps are sampled using
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staircase join operators, while the sampling of relational-joins, which are
restricted in the implementation to equi-joins, is performed using an index-
based joins. Therefore, the implementation of ROX in a pipelined system
requires, on the one hand, the support of a structural join that satisfies the
zero-investment property, and, on the other hand, the existence of an index
on one of the equi-joined attributes. The latter is not a realistic requirement
and therefore we investigate some possible solutions.

Techniques that efficiently sample a relational join without the use of
an index have been proposed in [29]; however, they require the existence
of statistics, a requirement we do not want ROX to depend on. Therefore,
if an index on the joined attribute is not available, a hash-based join can be
used to sample a relational join. But this means that hash tables must be
built on both the input sample and the entire relation. The first operation
is cheap; however, hashing an entire relation R is expensive, and does not
conform to the zero-investment property. We argue that the cost of hashing
is in fact amortized, since the hash table will be used by the subsequent
sampling operations, and when executing the final plan with full tables.
The latter implies that instead of building the hash table during the full
execution of the chosen plan, the hashing operation is moved forward and
rescheduled to occur when a join with the relation R is sampled for the first
time. If the hash table is indeed used during the execution of the plan, then
building the hash table before the sampling operation is similar to using
a sampling operation with is compliant to the zero-investment property.
Similarly, it is possible to sample a join with a sort-merge implementation
instead of hash-based one. In that case, the relation R is sorted instead
of hashed. This allows the use of a sort-merge join while executing the
final plan, which might be a better choice in case the data is known to be
already sorted. A sort-merge join also allows ROX to support the sampling
and execution of relational joins with range comparison.

Conclusion

In this chapter, we have presented ROX-sampled a variant of ROX that is
suitable for database systems with a pipelined execution strategy. Contrary
to ROX-full, ROX-sampled uses only sampled data throughout the whole
algorithm, hence consuming and generating a small number of tuples.
The execution decisions made during every optimization phase of ROX-
sampled are recorded, thus iteratively defining the final execution plan.
When all edges are ordered, the final plan is then executed on full tables.
A detailed description of the ROX-sampled algorithm has also been given.
Experiments assessing the performance and robustness of ROX-sampled
have been presented, and the requirements to implement ROX-sampled in
a pipelined database systems were briefly studied.



Conclusion

In Section [6.1.1} while giving a global overview of the ROX-sampled
approach, three questions were posed. We present the answers below.

Does the use of only small samples during both the optimization and execution
steps jeopardize the robustness of the algorithm?

Although only data samples are used throughout the whole algorithm,
the experiments have shown that the performance of ROX-sampled is
comparable to ROX-full, especially, when using a larger sample size: the
plans generated are on average 6% slower than their ROX-full counterpart.
The latter shows that ROX-sampled is indeed more sensitive than ROX-full
with respect to the size of the chosen samples. Moreover, setting the cutoff
limit for the sampling operations performed during the execution phases
of ROX-sampled to twice the sample size is enough to maintain the quality
of generated plans.

Will the small generated intermediates be representative enough to detect data
correlations?

Experiments have shown that the ROX-sampled approach is robust in the
face of different types of correlations. It is capable of not only detecting but
also exploiting the existing correlations to generate good execution plans.

ROX-sampled needs, in some situations, to perform redundant operations. Will
this reduce the efficiency of ROX-sampled?

It was shown that the sampling overhead in ROX-sampled is kept limited.
Despite all the re-execution and sampling operations, the overhead is on
average only 6% higher than that of ROX-full.

Finally, we conclude by stressing that the main contribution of this chapter
is the generalization of ROX to pipelined systems, allowing the large
number of pipelined database engines to integrate the ROX idea into their
optimization paradigm.
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Conclusions

In this chapter, we present our answers to the research questions posed in
Chapter [1|and briefly describe possible future research directions. We first
quickly review the problem we aim to solve, and give a brief overview of
our ROX solution.

Relational database systems have been introduced in the 70’s, and since
then the optimization of queries submitted to a database system has
been extensively researched resulting in the proposal of a multitude of
techniques. While sufficient for some applications, the widely used type
of optimizers are not always robust, and in some cases pick execution
plans that are far from optimal. The reasons behind the shortcomings of
classical optimizers are the following: (i) they depend on statistics and a
cost model which are often inaccurate, not up-to-date, and sometimes even
absent, (ii) they fail to detect correlations which can unexpectedly make
certain plans much cheaper than others, (iii) they cannot efficiently handle
the large search space of big queries. The challenges faced by traditional
relational optimizers and their impact on the quality of the chosen plans
are aggravated in the context of XML and XQueries. This is due to the
fact that in XML, statistics should capture, in addition to the value of the
nodes, the structure of the document. Moreover, the search space of plans
for an XQuery query is on average larger than that of relational queries.
This is due to the higher number of joins in an XQuery plan resulting from
the existence of many XPath steps in a typical query.

To overcome the above challenges, we propose an optimizer that sat-
isfies the following properties: autonomy from statistics and cost model,
robustness in always finding a good execution plan, and efficiency in
exploring the search space. Our approach is to adopt an optimizer with
a fundamentally different internal design which moves the optimization
to run-time, and interleaves it with query execution. As such sampling
techniques can be used to accurately estimate the cardinality and cost of
operators without depending on any statistics and cost model. To detect
correlation among the queried data, we introduce the chain sampling tech-
nique which we believe to be the first generic and robust method to deal
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with any type of correlated data. We suggest to explore the search space
by interleaving optimization and execution steps, defining the plan incre-
mentally, i.e. the plan is built step by step. The exploration is performed
efficiently through the chain sampling technique.

Our proposed optimizer is ROX. ROX is the first run-time optimizer for
XQueries. It interleaves optimization and execution steps where each op-
timization phase initiates a sampling-based search for the superior sequence
of operators. The subsequent execution step executes the chosen sequence
and materializes the results, allowing the next optimization phase to bene-
fit from the newly materialized intermediates, and the knowledge which
can be extracted from it. ROX has been explained in detail in Chapter
It has been implemented on top of the MonetDB database system, and
experiments have been conducted which have shown that ROX is indeed
robust and efficient, and performs better than and relational compile-time
optimizers.

7.1 Revisiting the Research Questions

In this section, we enumerate the research questions introduced in this
thesis, and then present the answers given by ROX to these questions.

7.1.1 Main Research Question

The main research question which is the center of focus of this thesis is the
following:

Main research question: How to develop an XQuery optimizer that has the
following properties: autonomy, robustness in always finding a good execution
plan, and efficiency.

The above main research question has been divided into the following
three sub-questions:
® Research question 1: How can an optimizer accurately estimate the car-
dinality and cost of operators without relying on any a priori collected
statistics and cost model?

® Research question 2: How can the correlation existing between several
attributes be detected and exploited?

® Research question 3: How can the proposed optimizer quarantee a good
quality of decisions?

We now present the answers given by ROX to the above questions, describ-
ing how the run-time optimizer satisfies the 3 properties mentioned in the
main research question.
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Autonomy

By deferring optimization to run-time, ROX eliminates any dependency
on a priori collected statistics and a pre-built cost model. As such it does
not suffer from the deficiencies of the current state-of-the-art in XQuery
cost estimation, and their adverse effect on the decisions of optimizers.
ROX makes autonomously informed optimization decisions by accurately
observing, through the use of sampling techniques, the size and character-
istics of (intermediate) data and the cost of operators (Research question 1).

Robustness

The robustness of ROX is the result of several aspects in its design. We
present these next.

Accurate estimations (Research question 1): Through the use of sampling
techniques, ROX not only eliminates any dependency on the existence of
statistics and cost model, but also succeeds in making accurate estimations
about the result size and cost of the joins in the graph. The cases in which
the estimations deviate from the real values can be avoided through the use
of better sampling techniques. Moreover, the alternation of optimization
and execution steps in which results are fully materialized allows ROX
to update the previously estimated result sizes using the newly material-
ized intermediates, hence always improving the accuracy of the derived
estimations.

Detection of correlation (Research question 2): By updating the know-
ledge in the join graph after each execution phase, ROX can detect previ-
ously unnoticed correlations between the newly materialized data and the
other data in the join graph. Moreover, exploring the join graph through
the chain sampling process in which different sequences of join operators
are consecutively sampled enables ROX to discover existing correlations
among the joined XML nodes. We note that our chain-sampling technique
provides the first generic and robust method to deal with any type of
correlated data.

Quality of decisions (Research question 3): The ROX algorithm defines
the execution plan of a given query iteratively: every optimization step
decides which sequence of operators to execute next. This decision is
made during the chain sampling process by either the SUPERIORPATH or
the SToPPINGCONDITION functions which guarantee that the path returned
for execution is a path estimated to be superior to all the explored paths in
the join graph.

The above three characteristics of our run-time optimizer succeed in making
ROX robust in constantly finding (near-)optimal plans and invariably
avoiding the bad ones.
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Efficiency

ROX explores the search space of a query by iterating optimization and
execution phases, defining the execution plan in an augmentation manner.
It uses the chain sampling technique to explore different path segments in
the graph in search for a superior path. To ensure an efficient exploration,
ROX uses a stopping condition which detects the existence of a superior
path without exploring the whole join graph. Moreover, ROX uses a cutoff
limit and small samples as input to the sampling operations of joins to
keep the sampling cost under control. The conducted experiments have
indeed shown that ROX is an efficient optimizer, it keeps the sampling
overhead imposed by the run-time optimization limited. With a sample
size equal to 100 tuples, the sampling overhead is on average around 27%
of the full execution time.

In summary, ROX, the first proposed run-time optimizer for XQueries, is autonom-
ous, efficient, and robust in finding good execution plans. It does not depend on
any statistics and cost model, and accurately estimates the size of joins through
sampling. It also gives a certain guarantee on the quality of the paths chosen
for execution. Its chain sampling technique provides the first generic and robust
method for detecting any type of correlations. ROX improves the state-of-the art
in XQuery optimizers both in plan quality and execution time.

Research Question 4:

The fourth research question posed in Chapter [1]is the following:
Research question 4: How can our proposed optimization technigue be applied to
different database system architectures (full materialization and pipelined execution
strategies)?

The original variant of ROX, named ROX-full, is proposed in the context
of database systems that support full materialization of intermediates.
Since most used database systems nowadays adopt a pipelined execution
scheme, we designed ROX-sampled, a variant of ROX-full, that is suitable
for the aforementioned database architecture. The two ROX variants are
similar, but contrary to ROX-full, ROX-sampled uses only sampled data
throughout the whole algorithm, hence consuming and generating a small
number of tuples at every optimization and execution step.

Although only data samples are used throughout the whole ROX-
sampled algorithm and the operations performed during its execution
phases are cutoff-sampled, its performance is comparable to that of ROX-
full especially when using a relatively larger sample size (equal to 1000
tuples). It has been shown that ROX-sampled is a robust optimizer which
succeeds in choosing (near-)optimal plans, and is capable of detecting
and exploiting different types of correlations. Despite the fact that ROX-
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sampled performs considerably more sampling operations than ROX-full,
its sampling overhead is kept limited to on average 34% of the full execution
time, which is on average only 7% higher than ROX-full.

Summarizing, ROX-sampled is a generalization of the ROX approach, allowing
the large number of existing pipelined database systems to integrate the ROX idea
into their optimization paradigm. ROX-sampled has shown to be a robust and
efficient optimizer with a performance closely comparable to that of ROX-full.

7.2 Additional Strong Aspects of ROX

In addition to the already mentioned characteristics of ROX, we list here
other strong aspects of our run-time optimizer.

* Beyond the current state-of-the-art: ROX is one of the very few
techniques in the relational context and the first in XML that goes
beyond simply moving query optimization to run-time to intertwining it
with query evaluation. ROX improves the state-of-the art in XQuery
optimizers both in plan quality as well as running time.

* Support of the entire XQuery language: Although ROX focuses
on optimizing the crucial order of the relational joins and XPath
steps in a join graph, the possibility to handle multiple join graphs
embedded in one execution plan allows ROX to support the entire
XQuery language. We stress that the fragment of the XQuery language
which can be mapped to an execution plan with a single join graph
is more expressive than the twig queries widely considered in other
previous work [26) 35} 129} 33} [65].

¢ Seamless handling of XPath steps and relational joins: By group-
ing the XPath steps and relational joins in one join graph structure,
ROX is able to integrate XPath- and XQuery-specific optimization
techniques in the well-known approach of re-ordering relational joins.
In fact, as part of the seamless optimization of the execution order of the
two different types of operators: XPath steps and relational joins, ROX
also breaks-up and stitches complex path expressions, and adaptively
determines the execution direction of a step (i.e. whether to execute the
step with a forward or a backward axis).

¢ Beyond XQuery: Although the ROX approach is explained in the
context of XQuery, we stress that the proposed optimization strategy
is generic enough to be exported to other query languages, like SQL
and SPARQL.*

* Dynamic environments: Given a specific query load, the perform-
ance of classical optimizers can be enhanced by determining and

'http://www.w3.org/TR/rdf-sparql-query/

209


http://www.w3.org/TR/rdf-sparql-query/

7. Conclusions

7.3

7.3.1

7.3.2

210

building beforehand the appropriate statistics that accurately estim-
ate the result size of the operators in any of the queries. For those
queries that include attributes without statistics, the performance of
the optimizer might degrade. ROX, on the other hand, is not “query
specific”. Due to its independence of the existence of statistics, ROX
is capable of adapting to different query loads, hence performing
well in dynamic environments where the workload is continuously
changing.

Future Research Directions

We now finally sketch possible future work to extend and enhance the
ROX approach.

Balancing Between the Optimization and Execution Times of a Query

Since ROX intertwines sampling-based query optimization with query
evaluation, it becomes possible to strike a balance between these two query
evaluation cost factors. ROX can estimate the potential execution cost
of a given query by observing, through sampling, the execution time of
the joins. Then, based on the estimated cost, it can adaptively determine
the amount of time to invest on optimization. A potential approach to
balance between the amount of time to spend on the optimization and the
execution of a query has been described in Section|[5.5.9]

Incorporating Execution Time in the Weight of Edges

The ROX algorithm described in this thesis only looks at the result sizes
of the edges in the join graph to decide which sequence of operators to
execute next. An alternative is to also measure the execution time of the
sampled operators and to take it into account in the decision making
process. To a limited extent, such functionality is already present in the
current ROX prototype which, after deciding to execute an edge, samples
the edge in the two possible execution directions trying all applicable
physical operators to see which one is fastest. The execution time of an
edge can be derived as part of the weight estimation process, and therefore
does not lead to any extra sampling cost. In summary, a future adaptation
of ROX may use the actual execution time of a sampling operation in
the calculation of the weight of an edge, such that deciding which path
segment to execute naturally takes into account more characteristics of
operator execution.
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7.3.3 Pipelining in ROX-full

Even though current RAM sizes and virtual memory techniques allow
materializing strategies on many of today’s “large” problems, MonetDB
and other database systems that are based on full materialization share
the risk of unnecessarily materializing large intermediate results. The
ROX-full approach of fully materializing the execution result of edges faces
the same risk. To avoid this potential problem, a possible extension to
ROX-full could identify, while chain sampling, path segments that generate
large intermediates, and execute such sub-chains in a pipelined fashion,
thus improving scalability. Moreover, to achieve higher CPU efficiency,
the vectorized iterator introduced in MonetDB /X100 [23] can be adopted
instead of the traditional tuple-by-tuple pipelining mechanism.

7.3.4 Re-Optimization in ROX

Although much robuster than other optimizers, ROX also suffers from
a small risk of picking for execution a bad sequence of operators. The
latter is due to the adopted sampling techniques which in few cases
wrongly estimate the result size of joins. To neutralize the effect of such
erroneous estimations, ROX could, while executing the chosen sequence
of operators, take note of the actual size of the generated intermediates,
and compare it with the estimated values. If the difference between
the two numbers is larger than a certain factor f, then execution stops
and optimization is re-initiated. Query re-optimization has already been
suggested in literature [79, @1]. Since ROX consists of an alternation
between optimization and execution, such re-optimization techniques are
much easier to incorporate in ROX than in classical database systems. The
main question in the ROX scenario is how to determine the value of the
factor f which dictates the acceptable gap between the estimations and the
actual observed numbers. The work in [91] assigns a validity range for
each enumerated plan, defining an upper and lower bound outside which
the plan is considered sub-optimal. A similar approach might be employed
here, in which the path segment chosen for execution is assigned an upper
bound of tuples it is allowed to generate. If the number of tuples produced
during the execution of the path exceeds the upper bound, then execution
is halted and optimization is re-initiated.

Another question is whether to materialize or disregard the interme-
diate results generated during the execution of the bad path segment. If
the intermediates are considerably large, it might be that joining it with
other data will add more cost than re-executing the same path segment at a
later stage. In case the intermediates are materialized, they can be used to
update the knowledge in the join graph before re-starting the optimization
phase.
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Pushing Other Operators Inside the Join Graph

An interesting point to study is the possibility to push other types of
operators like Sort, Distinct, and Group inside the join graph, and find
efficient ways of integrating these operators into the runtime optimization
and evaluation environment of ROX. This extension would move ROX
beyond the optimization of the order of joins only.

Improvements to Estimation Techniques

We have already mentioned that the sampling techniques used in ROX to
sample from tables and indexes are primitive. Therefore, there is room
to adopt better sampling techniques which result in more representative
sample sets.

Moreover, the implementation of the proposed cutoff sampling ap-
proach is front biased, which might lead to erroneous estimations of the
result size of joins. We have in Section described a better technique
which can be used to improve the representativeness of the sampling
results, and consequently the accuracy of estimations.

Finally, the estimation of cost(p;|p;) is done through linear extrapolation,
which in some cases might result in estimations that are from the real value.
To derive a more accurate estimation of the cost, one of the techniques
proposed in Section could be adopted.

Other Possible Future Work

We briefly list here some additional future work.
1. Investigate the use of a dynamic sample size which is adaptively
determined by ROX based on, among others, the size of the sampled
table and the time already spent on optimization.

2. Investigate the possibility of filtering out, during the query evalu-
ation, the duplicate data generated by joins, and re-introduce these
duplicates when generating the final result of the join graph.

3. Test the ROX approach with a wider variety of data and queries,
including purely relational use cases, to better confirm ROX'’s robust-
ness and efficiency.

4. Conduct an experimental comparison between the theoretical and
the implemented chain sampling approaches.

5. Implement ROX-sampled in a real pipelined database system and
compare it to its own optimizer.

6. Investigate the possibility of adopting the ROX approach in non-
relational XML database systems, like for instance Natix [44].>

*http://pi3.informatik.uni-mannheim.de/natix.html
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Summary

Query optimization is the most important and complex phase of answering
a user query. While sufficient for some applications, the widely used type
of relational optimizers are not always robust, picking execution plans that
are far from optimal. This is due to several reasons. First, they depend on
statistics and a cost model which are often inaccurate, and sometimes even
absent. Second, they fail to detect correlations which can unexpectedly
make certain plans considerably cheaper than others. Finally, they cannot
efficiently handle the large search space of big queries.

The challenges faced by traditional relational optimizers and their
impact on the quality of the chosen plans are aggravated in the context
of XML and XQueries. This is due to the fact that in XML, it is harder
to collect and maintain representative statistics since they have to capture
more information about the document. Moreover, the search space of plans
for an XQuery query is on average larger than that of relational queries,
due to the higher number of joins resulting from the existence of many
XPath steps in a typical XQuery.

To overcome the above challenges, we propose ROX, a Run-time Op-
timizer for XQueries. ROX is autonomous, i.e. it does not depend on
any statistics and cost models, robust in always finding a good execution
plan while detecting and benefiting from correlations, and efficient in
exploring the search space of plans. We show, through experiments, that
ROX is indeed robust and efficient, and performs better than relational
compile-time optimizers. ROX adopts a fundamentally different internal
design which moves the optimization to run-time, and interleaves it with
query execution. The search space is efficiently explored by alternating
optimization and execution phases, defining the plan incrementally. Every
execution step executes a set of operators and materializes the results,
allowing the next optimization phase to benefit from the knowledge ex-
tracted from the newly materialized intermediates. Sampling techniques
are used to accurately estimate the cardinality and cost of operators. To
detect correlations, we introduce the chain sampling technique, the first
generic and robust method to deal with any type of correlated data. We
also extend the ROX idea to pipelined architectures to allow most of the
existing database systems to benefit from our research.
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Samenvatting

Query-optimalisatie is de meest belangrijke en gecompliceerde fase bij
het beantwoorden van een query. Ook al zijn de standaard, veelgebruikte
relationele optimalisatiemethoden goed genoeg voor sommige toepassin-
gen, ze zijn niet altijd robuust; soms worden executieschema’s gekozen
die verre van optimaal zijn. Dit heeft meerdere oorzaken. Ten eerste zijn
de optimizers athankelijk van statistieken en een kostenmodel die vaak
onnauwkeurig, en soms zelfs volledig afwezig zijn. Ten tweede falen ze in
het detecteren van correlatie in de gegevens, terwijl deze correlatie ervoor
kan zorgen dat bepaalde schema’s, soms onverwacht, aanzienlijk efficiénter
zijn dan andere.

De uitdaging waar traditionele optimizers—met name wat betreft hun
impact op de kwaliteit van de gekozen schema’s—mee te maken hebben,
worden verder uitvergroot in de context van XML en XQueries. Dit komt
vanwege het feit dat met XML het moeilijker is om representatieve stat-
istieken te verzamelen en te beheren, en omdat de statistieken meer in-
formatie over het document zelf moeten vastleggen. Bovendien is de
zoekruimte bij het vinden van schema’s voor een XQuery-query gemid-
deld gezien groter dan die voor relationele queries. Dit wordt veroorzaakt
door het grote aantal joins die voortkomen uit de vele XPath-stappen in
een doorsnee XQuery.

Om bovenstaande uitdagingen het hoofd te bieden stellen wij ROX
voor, wat staat voor Run-time Optimizer voor XQueries. ROX is autonoom,
dat wil zeggen, het is niet athankelijk van welke statistieken en kosten-
modellen dan ook. Het is robuust met betrekking tot het altijd kunnen
vinden van een goed executieschema, waarbij het correlaties detecteert en
ervan profiteert, en het is efficiént in het doorzoeken van de zoekruimte van
mogelijke executieschema’s. Door middel van experimenten laten we zien
dat ROX inderdaad robuust en efficiént is en beter presteert dan relationele
compile-time optimizers. ROX maakt gebruik van fundamenteel ander
ontwerp en andere technieken, waarbij de optimalisatie verplaatst wordt
naar de uitvoeringsfase van een query. De optimalisatie en uitvoering van
een query worden om-en-om uitgevoerd. De zoekruimte wordt efficiént

239



7. Samenvatting

verkend bij dit afwisselend uitvoeren en optimaliseren, waardoor het execu-
tieschema incrimenteel wordt bepaald. Bij elke uitvoeringsstap wordt een
verzameling operatoren uitgevoerd waarvan het resultaat wordt bewaard.
De volgende optimalisatiestap kan profiteren van kennis die uit dit voor-
gaande tussenresultaat afgeleid kan worden. Steekproeftechnieken worden
gebruikt om nauwkeurig de kardinaliteit en de kosten van de operatoren
te kunnen inschatten. Om correlatie te kunnen detecteren introduceren we
een techniek baseerd op een keten van steekproeven, de eerste generieke
en robuuste methode die om kan gaan met alle typen correlaties die voor
kunnen komen in gegevens. Daarnaast breiden we ROX-aanpak uit voor
toepassing in databases met een pipelined architectuur, wat het mogelijk
maakt dat de meeste bestaande databasesystemen kunnen profiteren van
ons onderzoek.
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